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* An abstract view of deep network
* An abstract view of deep network solver

* Three cases
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas
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Homework and Course Arrangement

* Very easy homework. Deadline passed. Late submissions

will be NOT accepted.

* Those who did a good hw#1 will be notified

* Please consider dropping the course if you fail with hw#1

— Coz you will recetve a VERY low score with the course going

* Homework will be explained in class#4

* Why do we assign this homework?
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An abstract view of deep network

* Estimate the output

0; = Li(x)

0, = LyL; (x))

05 = Ly( Ly(Ly(Ly(Ly(x)))))
* Compute the loss function

C = Loss(0;, y)

, oC  9C 0Jojqq
Compute the gradient Jo, _ Doy Do,

9C  9C dos Doy oz Doy B -
Jdoi Odos dos 0oz Odos 0oy
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An abstract view of deep network (2)

* Estimate the output (Forward propagation)

05 = Ls( Ly( Ls( Ly Ly(x)))))

* Compute the gradient (Backward propagation)

0_0_ oC .805.804.803.802
Jdoi 0oz 0oy 0oz Qoo Joq

\VAVAVAWV,
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An abstract view of deep network (3)

* Suppose a layer is in the form of
0, = Li(x) = fi(w!x + b)

* We can COIIlpU.tC the gradients S.t. parameters

oC oc ()_C — O_C . f!
a_w:Za_m'fﬂ'Xi 86_;805 ’5
* Updating parameters by gradient descent
— Q s oc
W W — (X— — -
- b b— 5
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* There are many ways to define layers and cost
functions

* Layer definitions may differ from field to
field

— Computer vision
— NLP
— Speech

An abstract view of deep network (Summary)
* But there are only three key steps in deep
network
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1. Forward propagation
05 = Ly( L(Ly( Ly Lyx)))))

2. Backward propagation

O_C_ oC .805.804.803.802
Joi Odos Jos 0oz dos Ooq

3. Updating

An abstract view of deep network (Summary)
oC
wew-0a2l peb—all

[
Ow ob
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Brainstorming question:

Deep neural networks have been studied by Hinton, LeCun,
Bengio, Schmidhuber, and many others since 1990s.

Why only recently it becomes hot (again)?
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My understanding

Two reasons

In 1990s we do not have large scale datasets

In 2000s we have not only large scale datasets but also
powerful computers (w/o GPUs) to compute them

But what is the algorithm to learn from the large scale datasets?
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A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

with the hope that the cost in the testing set T will be small
toO.

1
m Z C?(Xj. yj ‘W)

JjeT
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A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

If C1s convex and continuous, we can try

1) gradient descent —

OW
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A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

If C1s convex and continuous, we can try
1) gradient descent

2) Newton’s method and its variants

1 T
WELrl = g — ]—t; Vu: C (Xz’-!/ilw) N
~ N “ 0

I~ o
inverse of Hessian
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A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

If C1s convex and continuous, we can try
1) gradient descent

2) Newton’s method and its variants

3) Coordinate descent @
4 ...
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A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

when N is big, we can see that
N

. 1 0C (Xq, yi|W) .
* The gradient T becomes very expensive.

* Even worse, we may not be able to load all (x, y,) in to
memotry!
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Stochastic Gradient Descent (SGD)

Idea: estimate the gradient on a randomly picked sample

e (Gradient descent W < W — O

1 i: OC (Xi, yi|W)

N <4 OwW
1=1

' ' ODC(Xs. s |W
* Stochastic gradient descent W+ w — « ( ;;WJ | w)
(

Theoretical requirement for convergence:

2 E ¢y = OO
Z ap < 0 n in deep learning practice we
; :

just choose a small rate and
then decrease it
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Stochastic gradient descent
(SGD) on single machines is

much easier to program

than many optimization
methods!
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Example: traditional SVM optimization (SMO)

N
Classifier F(x) =) a:K(x,x;) with the cost function

1=1
N [ N
argmax » ;=5 3 oiayyiyiK (X X;)
=1 ij=1
0<a; <& S iy =0
>0 > s i—=1 XiYi —

SMO algorithm:

Q Heuristically picks 2 variables, say «;, o, and freeze the other variables.
© Analytically update o, o

© Iterate until converges.

You may write hundreds or even thousands of lines of
codes to implement SMO
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But you can implement a stochastic SVM in 10 lines

function w=pegasos SVM(X,Y,lambda, nepochs)
[m,d] = size(X); w = zeros(d,l); t = 1;

for (i=1:nepochs) % iterations over the full data
for (tau=l:m) % pick a single data point
if (Y(tau)*X(tau,:)*w < 1) % data‘too close or wrongly separe
w = (l-1/t)*w + 1/ (lambda*t) *Y (tau) *X(tau,:)"';
else

w o= (1-1/t)*w;
end
t=t+; % lncrement counter
end
end

Can you find the problem of this code?

Pegasos SV M by Shai Shalev-Shwartz
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Philosophy of SGD

* One iteration of SGD 1s way faster than one iteration of GD

* SGD relies on randomness to reduce the cost although it may
not find the global minimum

* But SGD fits better data + local minimum than global
minimum, esp when
— Cost function is not convex

— Training set 1s not the same distribution as testing set
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SGD as a typical deep learning solver

for patch = uttL

self.mlp .forward(xs(patch,:)):
self.mlp .backward(ys(patch,:)):

self.mlp .update(); 1
end

For every layer, compute the gradient and update.

self.W = self.W - self.EW_ * self.step ;
self.B = self.B - self.EB_ * self.step ;
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SGD and GPUs

for patch = uttL
self.mlp .forward(xs(patch,:)):
self.mlp .backward(ys(patch,:)):

self.mlp .update(); l
end

For every layer, compute the gradient and update.

self.W = self.W - self.EW_ * self.step ;
self.B = self.B - self.EB * self.step ;

* Within every batch, SGD is mainly matrix
multiplication: perfect task for GPU!

* Beyond every batch, SGD i1s sequential: so
multiple GPUs may help!
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Logistic regression

Logistic regression = one layer neural network + neg-

loglikelihood cost

LR can be used separately or as the last layer of MLP.

Consider the binary case:

exp(8'x)
1 4+ exp(S1x)

e Decision function: p(x) = Pr(y =1|x) =

N

N

* Cost Z C(x;,9;) = z:[yi log p(x) + (1 — y;) log(1 — p(x))]
1=1 1=1
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Solving logistic regression (traditional methods)

* Compute the gradient N

L(B) = ZC(Xi;yi)

* Solver 1: gradient descent

OL([ 0L
)Z{;) _ XT(F _p) ,8 _ ,8 — 8(6/8)
* Solver 2: Newton’s method
H=v°L(B) = - XWX B=p3— H1 aggﬁ)

W 1s a diagonal matrix with the element as p(x)(1-p(x)).
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Analyzing the traditional solver

* Solver 1: gradient descent

L3 — _
;;):XT(F—IJ) f=p~-a

e Solver 2: Newton’s method

OL
H=v°L(B) = -X"WX B=p—-H' 8236)

Newton’s method converges faster than gradient descent,
but it requires more time to compute the Hessian matrix

And Newton’s method is expensive in large scale.
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Comparing optimization methods for Logistic Reg.

Global Memory Convergence | More criteria?
minimum consumption |speed
GD

Newton’s
method

SGD

Liangliang Cao




* An abstract view of deep network

* An abstract view of deep network solver

* Three case studies
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao




Multi-layer perceptron

* Generalized from single layer perceptron

1 if WTX +b>0 X,
f(x) = .
0 otherwise s

There is an interesting story between single layer perceptron
and multi-layer perceptron. See [Minsky and Papert, 1969]
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Multi-layer perceptron

XL
25K X
)

J%

—
Input N hidden Output
layer layers layers

The last layer 1s often logistic regression

The hidden layer 1s a perceptron with nonlinear function

¢(WTX + b) (jﬁ can be sigmoid, tanh, or rectifier
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Comparing optimization methods for MLP

Global Memory Convergence | More criteria?
minimum consumption |speed
GD

Newton’s
method

SGD
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Tricks to train MLP with SGD

* Initialize the neurons with random weights

* Randomly shuffle the data

* Use a batch in every SGD iteration

* Choose the learning rate by multiple trials.

More details will be covered by Feb 11 class.

Liangliang Cao




* An abstract view of deep network

* An abstract view of deep network solver

* Three case studies
— Logistic regression
— Multiple-layer perceptron (MLP)

— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao




Convolutional Layer

* Almost all image filters can be represented as 2D convolution

mw i

yom, n]= dm, )% b, n] = 3 3 i, 1 M =i, 0= j]

=t =t

output kernel (flipped) input
i|h(|9 0,0) (I,O)I(Z:O’!
(1,1
f e[ |onfonfe
|+ € Lt_), i 2|1 2)@“
—1(0, : | S
—— _._——""‘
——-""/
’J ////
o =
//
///
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A Nice lllustration of Convolution

1xl 1><I‘J 1xl 0 0
Oxﬂ 1xl 1><I‘J 1 0 4
Oxl Oxﬂ 1xl 1 1
0(0|1(1|0
0(1|1(0|0
Image Convolved
Feature

Gif picture courtesy to ufldl.Stanford.edn/ wiki
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Forward and Backward Propagation for Conv Layer

* Forward propagation

Y(s,j) — Z L(s,d) * W(4,9)
icf

* Backward propagation

oL 0L OL OL
. Z u t j 1) - — Z " * *’E'.(S,i)

s 1) jEf" U'lt.‘(j___i) seS {)y(s,j}
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Why Deep CNN Is Powerful?

Conceptually, three reasons:

1. Many many filters

2. A number of layers

3. Conv + Pooling lead to local invariance
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An Example of Deep CNN

Classification output

2 fully connected
layers i3
pldEl ¢ == s
} ﬂ + | e
more layers of 3
convolution ,
Krizhevsky, Sutskever and LS
neon £ Conv Output 55%55%95 |
Ist place, ImageNet onv Cutput N
LSVRC 2012 (11 5 11 x 96) com3D /1

(4>c4) max pooling

Input: 224%224%3
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Local Invariance

Convolution is usu

lly followed by a max-pooling layer

= J

Image courtesy to

Amol Mahurkar

Y

Convolved N Pboied
feature feature

e Convolution is translation invariant:

— any translation invariant operation can be represented as a
convolution.

* Convolution + max pooling can find local invariant features
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Many Many Filters

Number of filters in the Alex’ CNN

* Filters in 1st conv layer: 3 x 96 (neighborhood 11 x 11)
* Filters in 27 conv layer: 96 x 128 (neighborhood 5 x 5)
* Filters in 3* conv layer: 256 x 384 (neighborhood 3 x 3)
* Filters in 4™ conv layer: 384 x 192 (neighborhood 3 x 3)
* Filters in 5% conv layer: 384 x 128 (neighborhood 3 x 3)

Millions of parameters!

Liangliang Cao




Make the CNN Even Deeper

* [Simonyan and Zisserman 2014] suggests to use replace
one conv layer (big filter size) with several concatenated

conv layers (small filter size)
Pooling layer »
7 x 7 Conv layer

* [Szegedy et al 2014] proposes to replace one conv layer
with concatenated inceptions

1x1Conv
3 x 3 pooling

Concatenation

Pooling layer
3 x 3 Conv layer
3 x 3 Conv layer
3 x 3 Conv layer

1x1Conv 1x1Conv 3 x 3 poolinc
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From 1D convolution to 2D convolution

1D convolution is widely used in speech and NLP

* Computational complexity: O(M*m)

2D /3D convolution is mainly used for image/video

* Computational complexity: O(M*N*m*n)

Convolution with 2D Gaussian 1s efficient by separating 2D into 2*1D
* Computational complexity O(M*N*m * 2)
* But most CNN filters cannot be separated
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How Hard to Implement 2D Convolution?

* It is not super hard at the first glance

for w in 1..W
for h in 1..H
for x in 1..K
for y in 1..K
for m in 1..M
for d in 1..D
output{w, h, m) += input{w+x, h+y, d) * filter(m, x, y, d)
end
end
end
end
end
end

* But we overlooked cache, parallelism, or any fancy SSE2 command
* And it becomes 10 times tricky with GPUs!
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Three Ways to Implement Fast Convolution in GPU

1. Directly implement convolution algorithm
*  Extremely demanding with memory, data transportation, and model sharing

*  Very challenging for GPU programming skills

2. Change convolution to matrix multiplication
*  Make good use of existing BLAS or cuBLAS library

* Maybe memory demanding

3. Use FFT instead of directly convolution

*  Convolution in image domain is equivalent to multiplication in frequency
domain

*  Performance may depends on the image/filter size.
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What kind of projects would you like to take in this class?

— Theory
— Applications
1. NLP
2. Vision
3. NLP + Vision
4. Your own data or problem?
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