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Outline

• An abstract view of  deep network

• An abstract view of  deep network solver

• Three cases

– Logistic regression

– Multiple-layer perceptron (MLP)

– Convolutional neural network (CNN)

• Q/A; Discussions on course project ideas
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Homework and Course Arrangement

• Very easy homework.  Deadline passed. Late submissions 

will be NOT accepted.

• Those who did a good hw#1 will be notified

• Please consider dropping the course if  you fail with hw#1 

– Coz you will receive a VERY low score with the course going

• Homework will be explained in class#4

• Why do we assign this homework?
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An abstract view of deep network

• Estimate the output
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• Compute the loss function

• Compute the gradient

C = Loss(o5 , y)

L5
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L1

x

o5 = L5( L4( L3( L2( L1(x) ) ) ) )

o1 = L1(x)

o2 = L2(L1 (x))
…
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An abstract view of deep network (2)

• Estimate the output (Forward propagation)
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• Compute the gradient (Backward propagation)

o5 = L5( L4( L3( L2( L1(x) ) ) ) )



Liangliang Cao

An abstract view of deep network (3)

• Suppose a layer is in the form of

• We can compute the gradients s.t. parameters

• Updating parameters by gradient descent
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An abstract view of deep network (Summary)
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• There are many ways to define layers and cost 

functions

• Layer definitions may differ from field to 

field

– Computer vision

– NLP

– Speech

– …

• But there are only three key steps in deep 

network
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An abstract view of deep network (Summary)
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1. Forward propagation

2. Backward propagation

o5 = L5( L4( L3( L2( L1(x) ) ) ) )

3. Updating
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Brainstorming question:

Deep neural networks have been studied by Hinton, LeCun, 

Bengio, Schmidhuber, and many others since 1990s.

Why only recently it becomes hot (again)?
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My understanding

Two reasons

12

In 1990s we do not have large scale datasets

In 2000s we have not only large scale datasets but also 

powerful computers (w/o GPUs) to compute them

But what is the algorithm to learn from the large scale datasets?
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A typical optimization problem 

Very often, a machine learning model with parameter w 

aims to minimize

with the hope that the cost in the testing set T will be small 

too.
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A typical optimization problem

Very often, a machine learning model with parameter w 

aims to minimize

If  C is convex and continuous, we can try 

1 ) gradient descent
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A typical optimization problem 

Very often, a machine learning model with parameter w 

aims to minimize

If  C is convex and continuous, we can try 

1 ) gradient descent

2)  Newton’s method and its variants
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A typical optimization problem 

Very often, a machine learning model with parameter w 

aims to minimize

If  C is convex and continuous, we can try 

1 ) gradient descent

2) Newton’s method and its variants

3) Coordinate descent

4) …
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A typical optimization problem 

Very often, a machine learning model with parameter w 

aims to minimize

when N is big, we can see that 

• The gradient                            becomes very expensive. 

• Even worse, we may not be able to load all (xi, yi) in to 

memory!
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Stochastic Gradient Descent (SGD)

Idea: estimate the gradient on a randomly picked sample

• Gradient descent

• Stochastic gradient descent 

Theoretical requirement for convergence:
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in deep learning practice we 
just choose a small rate and 
then decrease it
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Stochastic gradient descent 

(SGD) on single machines is 

much easier to program 

than many optimization 

methods!
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Example: traditional SVM optimization (SMO)

Classifier                                 with the cost function

SMO algorithm: 

You may write hundreds or even thousands of  lines of  

codes to implement SMO
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But you can implement a stochastic SVM in 10 lines

Pegasos SVM by Shai Shalev-Shwartz
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Can you find the problem of  this code?
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Philosophy of SGD

• One iteration of  SGD is way faster than one iteration of  GD

• SGD relies on randomness to reduce the cost although it may 

not find the global minimum

• But SGD fits better data + local minimum than global 

minimum, esp when

– Cost function is not convex

– Training set is not the same distribution as testing set
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SGD as a typical deep learning solver
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For every layer, compute the gradient and update. 
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SGD and GPUs
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For every layer, compute the gradient and update. 

• Within every batch, SGD is mainly matrix 

multiplication: perfect task for GPU!

• Beyond every batch, SGD is sequential: so 

multiple GPUs may help!
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Logistic regression

Logistic regression = one layer neural network + neg-

loglikelihood cost 

LR can be used separately or as the last layer of  MLP.

Consider the binary case:

• Decision function:  

• Cost
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Solving logistic regression (traditional methods)

• Compute the gradient

• Solver 1: gradient descent 

• Solver 2: Newton’s method

is a diagonal matrix with the element as p(x)(1-p(x)).
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Analyzing the traditional solver
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• Solver 1: gradient descent 

• Solver 2: Newton’s method

Newton’s method converges faster than gradient descent, 

but it requires more time to compute the Hessian matrix 

And Newton’s method is expensive in large scale.
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Comparing optimization methods for Logistic Reg.
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Global

minimum

Memory 

consumption

Convergence 

speed

More criteria?

GD

Newton’s 

method

SGD
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Multi-layer perceptron

• Generalized from single layer perceptron

There is an interesting story between single layer perceptron 

and multi-layer perceptron. See [Minsky and Papert, 1969]
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Multi-layer perceptron

The last layer is often logistic regression

The hidden layer is a perceptron with nonlinear function

32

can be sigmoid, tanh, or rectifier 
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Comparing optimization methods for MLP
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Tricks to train MLP with SGD

• Initialize the neurons with random weights

• Randomly shuffle the data

• Use a batch in every SGD iteration

• Choose the learning rate by multiple trials.

More details will be covered by Feb 11 class.
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Convolutional Layer

• Almost all image filters can be represented as 2D convolution
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A Nice Illustration of Convolution

Gif  picture courtesy to ufldl.Stanford.edu/wiki
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Forward and Backward Propagation for Conv Layer

• Forward propagation

• Backward propagation



Liangliang Cao 39

Why Deep CNN Is Powerful?

Conceptually,  three reasons:

1. Many many filters

2. A number of  layers

3. Conv + Pooling lead to local invariance
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Input: 224*224*3

(11 x 11 x 96) conv3D 

(4x4) max pooling

1st Conv Output 55*55*96

more layers of

convolution

2 fully connected 

layers

Classification output

An Example of Deep CNN

Krizhevsky, Sutskever and 

Hinton

1st place, ImageNet 
LSVRC 2012

+
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Local Invariance

• Convolution is translation invariant: 

– any translation invariant operation can be represented as a 

convolution.

• Convolution + max pooling can find local invariant features 

41

Image courtesy to 

Amol Mahurkar

Convolution is usually followed by a max-pooling layer
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Many Many Filters

Number of  filters in the Alex’ CNN

• Filters in 1st conv layer: 3 x 96 (neighborhood 11 x 11)

• Filters in 2nd conv layer: 96 x 128 (neighborhood 5 x 5)

• Filters in 3rd conv layer: 256 x 384 (neighborhood 3 x 3)

• Filters in 4th conv layer: 384 x 192 (neighborhood 3 x 3)

• Filters in 5th conv layer: 384 x 128 (neighborhood 3 x 3)

Millions of  parameters!
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Make the CNN Even Deeper

• [Simonyan and Zisserman 2014] suggests to use replace 

one conv layer (big filter size) with several concatenated 

conv layers (small filter size)

• [Szegedy et al 2014] proposes to replace one conv layer 

with concatenated inceptions
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Pooling layer 

7 x 7 Conv layer 

Pooling layer

3 x 3 Conv layer

3 x 3 Conv layer

3 x 3 Conv layer

3 x 3 Conv 

1 x 1 Conv

5 x 5 Conv 

1 x 1 Conv

1 x 1 Conv 

3 x 3 pooling

Concatenation

3 x 3 Conv 

1 x 1 Conv

5 x 5 Conv 

1 x 1 Conv

1 x 1 Conv 

3 x 3 pooling
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From 1D convolution to 2D convolution

1D convolution is widely used in speech and NLP

• Computational complexity: O(M*m)

2D/3D convolution is mainly used for image/video

• Computational complexity: O(M*N*m*n)

Convolution with 2D Gaussian is efficient by separating 2D into 2*1D

• Computational complexity O(M*N*m * 2)

• But most CNN filters cannot be separated
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How Hard to Implement 2D Convolution?

• It is not super hard at the first glance

• But we overlooked cache, parallelism, or any fancy SSE2 command

• And it becomes 10 times tricky with GPUs!
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Three Ways to Implement Fast Convolution in GPU

1. Directly implement convolution algorithm

• Extremely demanding with memory, data transportation, and model sharing

• Very challenging for GPU programming skills

2. Change convolution to matrix multiplication

• Make good use of  existing BLAS or cuBLAS library

• Maybe memory demanding

3. Use FFT instead of  directly convolution

• Convolution in image domain is equivalent to multiplication in frequency 

domain

• Performance may depends on the image/filter size.
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Projects

What kind of  projects would you like to take in this class?

– Theory

– Applications

1. NLP

2. Vision

3. NLP + Vision

4. Your own data or problem?
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