A Computational Viewpoint for
Deep Learning

Liangliang Cao
Jan 28, 2014

http:/ /llcao.net/cu-deeplearning15/

* An abstract view of deep network
* An abstract view of deep network solver

* Three cases
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao 2

Homework and Course Arrangement

* Very easy homework. Deadline passed. Late submissions

will be NOT accepted.

* Those who did a good hw#1 will be notified

* Please consider dropping the course if you fail with hw#1

— Coz you will recetve a VERY low score with the course going

* Homework will be explained in class#4

* Why do we assign this homework?

Liangliang Cao 3

* An abstract view of deep network
* An abstract view of deep network solver

* Three case studies
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao 4

An abstract view of deep network

* Estimate the output

0; = Li(x)

0, = LyL; (x))

05 = Ly(Ly(Ly(Ly(Ly(x)))))
* Compute the loss function

C = Loss(0;, y)

, oC 9C 0Jojqq
Compute the gradient Jo, _ Doy Do,

9C 9C dos Doy oz Doy B -
Jdoi Odos dos 0oz Odos 0oy

Liangliang Cao 5

An abstract view of deep network (2)

* Estimate the output (Forward propagation)

05 = Ls(Ly(Ls(Ly Ly(x)))))

* Compute the gradient (Backward propagation)

0_0_ oC .805.804.803.802
Jdoi 0oz 0oy 0oz Qoo Joq

\VAVAVAWV,

Liangliang Cao 6

An abstract view of deep network (3)

* Suppose a layer is in the form of
0, = Li(x) = fi(w!x + b)

* We can COIIlpU.tC the gradients S.t. parameters

oC oc ()_C — O_C . f!
a_w:Za_m'fﬂ'Xi 86_;805 ’5
* Updating parameters by gradient descent
— Q s oc
W W — (X— — -
- b b— 5

Liangliang Cao 7

* There are many ways to define layers and cost
functions

* Layer definitions may differ from field to
field

— Computer vision
— NLP
— Speech

An abstract view of deep network (Summary)
* But there are only three key steps in deep
network

Liangliang Cao 8

1. Forward propagation
05 = Ly(L(Ly(Ly Lyx)))))

2. Backward propagation

O_C_ oC .805.804.803.802
Joi Odos Jos 0oz dos Ooq

3. Updating

An abstract view of deep network (Summary)
oC
wew-0a2l peb—all

[
Ow ob

Liangliang Cao 9

* An abstract view of deep network

* An abstract view of deep network solver

* Three cases
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao

Brainstorming question:

Deep neural networks have been studied by Hinton, LeCun,
Bengio, Schmidhuber, and many others since 1990s.

Why only recently it becomes hot (again)?

Liangliang Cao

My understanding

Two reasons

In 1990s we do not have large scale datasets

In 2000s we have not only large scale datasets but also
powerful computers (w/o GPUs) to compute them

But what is the algorithm to learn from the large scale datasets?

Liangliang Cao

A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

with the hope that the cost in the testing set T will be small
toO.

1
m Z C?(Xj. yj ‘W)

JjeT

Liangliang Cao

A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

If C1s convex and continuous, we can try

1) gradient descent —

OW

Liangliang Cao

A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

If C1s convex and continuous, we can try
1) gradient descent

2) Newton’s method and its variants

1 T
WELrl = g —]—t; Vu: C (Xz’-!/ilw) N
~ N “ 0

I~ o
inverse of Hessian

Liangliang Cao

A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

If C1s convex and continuous, we can try
1) gradient descent

2) Newton’s method and its variants

3) Coordinate descent @
4 ...

Liangliang Cao

A typical optimization problem

Very often, a machine learning model with parameter w
aims to minimize

when N is big, we can see that
N

. 1 0C (Xq, yi|W) .
* The gradient T becomes very expensive.

* Even worse, we may not be able to load all (x, y,) in to
memotry!

Liangliang Cao

Stochastic Gradient Descent (SGD)

Idea: estimate the gradient on a randomly picked sample

e (Gradient descent W < W — O

1 i: OC (Xi, yi|W)

N <4 OwW
1=1

' ' ODC(Xs. s |W
* Stochastic gradient descent W+ w — « (;;WJ | w)
(

Theoretical requirement for convergence:

2 E ¢y = OO
Z ap < 0 n in deep learning practice we
; :

just choose a small rate and
then decrease it

Liangliang Cao

Stochastic gradient descent
(SGD) on single machines is

much easier to program

than many optimization
methods!

Liangliang Cao 19

Example: traditional SVM optimization (SMO)

N
Classifier F(x) =) a:K(x,x;) with the cost function

1=1
N [N
argmax » ;=5 3 oiayyiyiK (X X;)
=1 ij=1
0<a; <& S iy =0
>0 > s i—=1 XiYi —

SMO algorithm:

Q Heuristically picks 2 variables, say «;, o, and freeze the other variables.
© Analytically update o, o

© Iterate until converges.

You may write hundreds or even thousands of lines of
codes to implement SMO

Liangliang Cao

But you can implement a stochastic SVM in 10 lines

function w=pegasos SVM(X,Y,lambda, nepochs)
[m,d] = size(X); w = zeros(d,l); t = 1;

for (i=1:nepochs) % iterations over the full data
for (tau=l:m) % pick a single data point
if (Y(tau)*X(tau,:)*w < 1) % data‘too close or wrongly separe
w = (l-1/t)*w + 1/ (lambda*t) *Y (tau) *X(tau,:)"';
else

w o= (1-1/t)*w;
end
t=t+; % lncrement counter
end
end

Can you find the problem of this code?

Pegasos SV M by Shai Shalev-Shwartz

Liangliang Cao

Philosophy of SGD

* One iteration of SGD 1s way faster than one iteration of GD

* SGD relies on randomness to reduce the cost although it may
not find the global minimum

* But SGD fits better data + local minimum than global
minimum, esp when
— Cost function is not convex

— Training set 1s not the same distribution as testing set

Liangliang Cao

SGD as a typical deep learning solver

for patch = uttL

self.mlp .forward(xs(patch,:)):
self.mlp .backward(ys(patch,:)):

self.mlp .update(); 1
end

For every layer, compute the gradient and update.

self.W = self.W - self.EW_ * self.step ;
self.B = self.B - self.EB_ * self.step ;

Liangliang Cao

SGD and GPUs

for patch = uttL
self.mlp .forward(xs(patch,:)):
self.mlp .backward(ys(patch,:)):

self.mlp .update(); l
end

For every layer, compute the gradient and update.

self.W = self.W - self.EW_ * self.step ;
self.B = self.B - self.EB * self.step ;

* Within every batch, SGD is mainly matrix
multiplication: perfect task for GPU!

* Beyond every batch, SGD i1s sequential: so
multiple GPUs may help!

Liangliang Cao

* An abstract view of deep network

* An abstract view of deep network solver

* Three case studies
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao

Logistic regression

Logistic regression = one layer neural network + neg-

loglikelihood cost

LR can be used separately or as the last layer of MLP.

Consider the binary case:

exp(8'x)
1 4+ exp(S1x)

e Decision function: p(x) = Pr(y =1|x) =

N

N

* Cost Z C(x;,9;) = z:[yi log p(x) + (1 — y;) log(1 — p(x))]
1=1 1=1

Liangliang Cao 26

Solving logistic regression (traditional methods)

* Compute the gradient N

L(B) = ZC(Xi;yi)

* Solver 1: gradient descent

OL([0L
)Z{;) _ XT(F _p) ,8 _ ,8 — 8(6/8)
* Solver 2: Newton’s method
H=v°L(B) = - XWX B=p3— H1 aggﬁ)

W 1s a diagonal matrix with the element as p(x)(1-p(x)).

Liangliang Cao

Analyzing the traditional solver

* Solver 1: gradient descent

L3 — _
;;):XT(F—IJ) f=p~-a

e Solver 2: Newton’s method

OL
H=v°L(B) = -X"WX B=p—-H' 8236)

Newton’s method converges faster than gradient descent,
but it requires more time to compute the Hessian matrix

And Newton’s method is expensive in large scale.

Liangliang Cao

Comparing optimization methods for Logistic Reg.

Global Memory Convergence | More criteria?
minimum consumption |speed
GD

Newton’s
method

SGD

Liangliang Cao

* An abstract view of deep network

* An abstract view of deep network solver

* Three case studies
— Logistic regression
— Multiple-layer perceptron (MLP)
— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao

Multi-layer perceptron

* Generalized from single layer perceptron

1 if WTX +b>0 X,
f(x) = .
0 otherwise s

There is an interesting story between single layer perceptron
and multi-layer perceptron. See [Minsky and Papert, 1969]

Liangliang Cao

Multi-layer perceptron

XL
25K X
)

J%

—
Input N hidden Output
layer layers layers

The last layer 1s often logistic regression

The hidden layer 1s a perceptron with nonlinear function

¢(WTX + b) (jﬁ can be sigmoid, tanh, or rectifier

Liangliang Cao 32

Comparing optimization methods for MLP

Global Memory Convergence | More criteria?
minimum consumption |speed
GD

Newton’s
method

SGD

Liangliang Cao

Tricks to train MLP with SGD

* Initialize the neurons with random weights

* Randomly shuffle the data

* Use a batch in every SGD iteration

* Choose the learning rate by multiple trials.

More details will be covered by Feb 11 class.

Liangliang Cao

* An abstract view of deep network

* An abstract view of deep network solver

* Three case studies
— Logistic regression
— Multiple-layer perceptron (MLP)

— Convolutional neural network (CNN)

* Q/A; Discussions on course project ideas

Liangliang Cao

Convolutional Layer

* Almost all image filters can be represented as 2D convolution

mw i

yom, n]= dm,)% b, n] = 3 3 i, 1 M =i, 0= j]

=t =t

output kernel (flipped) input
i|h(|9 0,0) (I,O)I(Z:O’!
(1,1
f e[|onfonfe
|+ € Lt_), i 2|1 2)@“
—1(0, : | S
—— _._——""‘
——-""/
’J ////
o =
//
///

Liangliang Cao

A Nice lllustration of Convolution

1xl 1><I‘J 1xl 0 0
Oxﬂ 1xl 1><I‘J 1 0 4
Oxl Oxﬂ 1xl 1 1
0(0|1(1|0
0(1|1(0|0
Image Convolved
Feature

Gif picture courtesy to ufldl.Stanford.edn/ wiki

Liangliang Cao

Forward and Backward Propagation for Conv Layer

* Forward propagation

Y(s,j) — Z L(s,d) * W(4,9)
icf

* Backward propagation

oL 0L OL OL
. Z u t j 1) - — Z " * *’E'.(S,i)

s 1) jEf" U'lt.‘(j___i) seS {)y(s,j}

Liangliang Cao

Why Deep CNN Is Powerful?

Conceptually, three reasons:

1. Many many filters

2. A number of layers

3. Conv + Pooling lead to local invariance

Liangliang Cao

An Example of Deep CNN

Classification output

2 fully connected
layers i3
pldEl ¢ == s
} ﬂ + | e
more layers of 3
convolution ,
Krizhevsky, Sutskever and LS
neon £ Conv Output 55%55%95 |
Ist place, ImageNet onv Cutput N
LSVRC 2012 (11 5 11 x 96) com3D /1

(4>c4) max pooling

Input: 224%224%3

Liangliang Cao

Local Invariance

Convolution is usu

lly followed by a max-pooling layer

= J

Image courtesy to

Amol Mahurkar

Y

Convolved N Pboied
feature feature

e Convolution is translation invariant:

— any translation invariant operation can be represented as a
convolution.

* Convolution + max pooling can find local invariant features

Liangliang Cao

Many Many Filters

Number of filters in the Alex’ CNN

* Filters in 1st conv layer: 3 x 96 (neighborhood 11 x 11)
* Filters in 27 conv layer: 96 x 128 (neighborhood 5 x 5)
* Filters in 3* conv layer: 256 x 384 (neighborhood 3 x 3)
* Filters in 4™ conv layer: 384 x 192 (neighborhood 3 x 3)
* Filters in 5% conv layer: 384 x 128 (neighborhood 3 x 3)

Millions of parameters!

Liangliang Cao

Make the CNN Even Deeper

* [Simonyan and Zisserman 2014] suggests to use replace
one conv layer (big filter size) with several concatenated

conv layers (small filter size)
Pooling layer »
7 x 7 Conv layer

* [Szegedy et al 2014] proposes to replace one conv layer
with concatenated inceptions

1x1Conv
3 x 3 pooling

Concatenation

Pooling layer
3 x 3 Conv layer
3 x 3 Conv layer
3 x 3 Conv layer

1x1Conv 1x1Conv 3 x 3 poolinc

Liangliang Cao

From 1D convolution to 2D convolution

1D convolution is widely used in speech and NLP

* Computational complexity: O(M*m)

2D /3D convolution is mainly used for image/video

* Computational complexity: O(M*N*m*n)

Convolution with 2D Gaussian 1s efficient by separating 2D into 2*1D
* Computational complexity O(M*N*m * 2)
* But most CNN filters cannot be separated

Liangliang Cao

How Hard to Implement 2D Convolution?

* It is not super hard at the first glance

for w in 1..W
for h in 1..H
for x in 1..K
for y in 1..K
for m in 1..M
for d in 1..D
output{w, h, m) += input{w+x, h+y, d) * filter(m, x, y, d)
end
end
end
end
end
end

* But we overlooked cache, parallelism, or any fancy SSE2 command
* And it becomes 10 times tricky with GPUs!

Liangliang Cao

Three Ways to Implement Fast Convolution in GPU

1. Directly implement convolution algorithm
* Extremely demanding with memory, data transportation, and model sharing

* Very challenging for GPU programming skills

2. Change convolution to matrix multiplication
* Make good use of existing BLAS or cuBLAS library

* Maybe memory demanding

3. Use FFT instead of directly convolution

* Convolution in image domain is equivalent to multiplication in frequency
domain

* Performance may depends on the image/filter size.

Liangliang Cao

What kind of projects would you like to take in this class?

— Theory
— Applications
1. NLP
2. Vision
3. NLP + Vision
4. Your own data or problem?

Liangliang Cao

