
Lecture 3: Theano 
Programming



Misc Class Items

• Registration & auditing class
• Paper presentation
• Projects:

• ~10 projects in total
• ~2 students per project

• AAAI:
• Hinton’s invited talk:

• Training data size increase
• Hardware improvement
• Linear rectifier activation function
• Pretraining



Review of Last Lecture

• Deep network
• How to learn deep network:

• Backprop
• SGD

• Case studies:
• Logistic Regression
• MLP
• CNN



Outline
•Big picture

• Introduction to Theano
•Theano vs. Numpy
•grad() for symbolic expression
•gradient descent as functional programming
• stochastic gradient descent



Big picture

For speech:
•Kaldi

For image:
•Caffe 
•cuda-convnet (1, 2)

For general classification:
•Theano 
•deeplearning4jDeep learning toolkits for three fields



What people say about Theano

• A compiler for mathematical expressions

• Statically typed and functional

• Smartly optimizes symbolic expressions

• Automatically translates them into C++ (or CUDA-C)



What people say about Theano

Easy to use, but sometimes it tries to guess your intention without 
reporting notification

• A compiler for mathematical expressions

• Statically typed and functional

• Smartly optimizes symbolic expressions

• Automatically translates them into C++ (or CUDA-C)

Sounds cool, but we don’t know exact what the compiler is doing

Very general, but its error msgs are hard to understand

Save our labor, but its efficiency is not as good as cuda-
convnet



Programming Exercise 1: Hello World

• Purpose:
a. make sure theano + python is installed properly
b. can import theano & numpy

• Task:
a. Import theano & numpy
b. print hello world



Confusing Things about Theano

• Two very similar worlds:
• Numpy:

• Matrix operations

• Vectors & arrays

• Theano.tensor: needed for symbolic computation and C++ code generation 
and compilation

• Matrix operations (applicable to theano.tensor.variables & theano.tensor.constants 
only)!

• Theano functions must use theano.tensor operators

• All numpy arrays/vectors are automatically converted to theano.tensor.constants



Theano Function

theano.function(inputs=[x,y], # list of input variables
outputs=..., # what values to be returned
updates=..., # “state” values to be modified
givens=..., # substitutions to the graph



Exercise #2: Theano function vs. python

• Purpose:
• Compare python variable/function vs. theano variable/function
• Use theano function

• Task:
• Create a regular python function that implements:

• f(x,y) = 3x+4y+5
• Create the theano equivalent function
• Invoke the two functions with values: <x,y>= <1, 2> & <3, 4>



But what do we care most?

from theano import tensor as T

gradients = T.grad(cost, wrt)

Automatically compute gradients!!



Examples

import theano.tensor as T

x = T.scalar()

gx = T.grad(x**2, x)

gx2 = T.grad(T.log(x), x)

gx3 = T.grad(1/(x), x)



Programming Exercise #3: Gradient

• Purpose:
a. Demonstrate automatic gradient
b. Familiarize with the notion of using gradient to find max/min

• Task:
a. Take the gradient of the function foo in #2 with respect to x, and 

with respect to y
b. Take the gradient of the sigmoid of foo with respect to x and with 

respect to y



Exercise #3 Task b 

• What is sigmoid of 3*x+4*y+5?
• z = 3*x+4*y+5
• 1/(1+e-z)

• Why is this relevant to the topic of this class?

• What’s another name for this function?
y

x 3

4



Why we are excited with automatic gradient?



THE optimization method 
(in deep network or large scale learning)
• Stochastic Gradient Descent (SGD)

initialize the model (parameters denoted as  w )
do:

• randomly select a sample or a batch
• update



Gradient Descent

• Many ML algorithms aim to find the set of parameters w that 
minimizes an objective function C(w)

• Local minimum can be found by taking a step in the direction 
of the gradient of C(w) with respect to w 

• w = w - α ∇C(w)
• The step size α is called learning rate
• Online (single example) vs. batch (whole training set) vs. mini 

batch
• Stochastic gradient descent (SGD)



GD vs. SGD

Gradient descent Stochastic gradient descent

Converge to local minimum quickly May dance around local minimum

All the samples should be in memory Load one sample (or a batch) at a time

Not scalable Scalable but take account into disk IO

More likely to get into local minimum Higher chance to jump out local minimum due 
to randomness



Gradient descent as functional programming

train_model can be called easily 
during SGD training

W = theano.shared(value=np.zeros((n_in, n_out)),  name='W', borrow=True)
b = theano.shared(value=np.zeros((n_out,)), name = ‘b’)

g_W = T.grad(cost, W)
g_b =  T.grad(cost, b)

updates_FP = [(self.W, W - learning_rate * g_W),
                           (self.b, b - learning_rate * g_b)]

train_model = theano.function(inputs=[x,y], outputs=cost_func, updates=updates_FP )

for every epoch
for every batch (xi,yi)

train_model(xi,yi)



Exercise #4: Logistic Regression Through 
Gradient Descent

• Purpose:
• Familiarize with gradient descent algorithm

• Task: given a set of training instances <xi,yi> from MNIST data set, 
implement a multi nomial logistic regression model using a mini-batch 
gradient descent that stops after 1 epoch:

• soft max function: ew_i*x/sum(ew_k*x)
• Use the following cost function:

• negative log likelihood/cross entry/log loss: 
• -log(yi)



Let’s put things together
def do_sgd:

        # load mnist data

# define theano functions

# training   

……

class lr_model(object):

     def __init__(self, x, n_in, n_out):

...

     def get_cost(self, y):

...

     def get_estimation(self):

...

     def get_prediction(self):

...



def __init__(self, x, n_in, n_out):

    self.W = theano.shared(value=numpy.zeros((n_in, n_out),

                                                 dtype='float64'),

                                name='W', borrow=True)

        self.b = theano.shared(value=numpy.zeros((n_out,),

                                                 dtype='float64'),

                               name='b', borrow=True)

        # compute vector of class-membership probabilities in symbolic 
form

        self.y_esti = T.nnet.softmax(T.dot(x, self.W) + self.b)



def do_sgd:
    dataset = '../data/mnist.pkl.gz'

    f = gzip.open(dataset, 'rb')

    train_set, valid_set, test_set = cPickle.load(f)

    f.close()

    

    train_set_x, train_set_y = train_set

    shared_train_x = theano.shared(numpy.asarray(train_set_x,

                                               dtype='float64'),

                                 borrow=True)

    ... ...



Debugging Theano

• Cannot step through Theanao functions

• There are some built in facilities for debugging:
• theano.config.exception_verbosity='high‘
• theano.config.compute_test_value = 'warn‘
• Etc.

• Debug by simplifying the functions to the basic operations



Evaluate a Theano expression

import theano.tensor as T

Import numpy as np

vx = T.vector()

fx = vx**2

fx.eval({vx:np.array([2,3,0])})



Conclusion

•Theano is a powerful tool 
•but sometimes difficult to debug

•SGD + NN training is easy to implement 
•But there are some tricks to improve the performance



A few errors from my experiments

• Theano 
• Theano can only use simple indexing, and (for newest version) integer 

indexing

• Numpy can use Boolean vector for indexing, but theano cannot!
• Errors may or may not be reported

• numpy

import numpy as np
a = np.array([1,2])
b = np.ones((3,1))
print a + b

Guess what is the result?


