DeepMind Self-Learning Atari Agent

“Human-level control through deep reinforcement learning”
— Nature Vol 518, Feb 26, 2015

“The Deep Mind of Demis Hassabis” — Backchannel /
Medium.com — interview with David Levy

“Advanced Topics: Reinforcement Learning” — class notes
David Silver, UCL & DeepMind



Motivations

“automatically convert unstructured information
into useful, actionable knowledge”

“ability to learn for itself from experience”

“and therefore it can do stuff that maybe we don’t
know how to program”

- Demi Hassabis



“If you play bridge, whist, whatever, | could
invent a new card game...”

“and you would not start from scratch... there is
transferable knowledge.”

Explicit 15t step toward self-learning intelligent
agents, with transferable knowledge.



Why Games?

Easy to create more data.
Easy to compare solutions.

(Relatively) easy to transfer knowledge
between similar problems.

But not yet.



“idea is to slowly widen the domains. We have a
prototype for this — the human brain. We can
tie our shoelaces, we can ride cycles & we can
do physics, with the same architecture. So we
know this is possible.”

- Demis Hassbis



What They Did

* An agent, that learns to play any of 49 Atari
arcade games

— Learns strictly from experience
— Only game screen as input

— No game-specific settings



DQON

* Novel agent, called deep Q-network (DQN)

— Q-learning (reinforcement learning)
* Choose actions to maximize “future rewards” Q-function

— CNN (convolution neural network)
e Represent visual input space, map to game actions

— Experience replay
* Batches updates of the Q-function, on a fixed set of observations

* No guarantee that this converges, or works very well.

* But often, it does.



DeepMind Atari -- Breakout



DeepMind Atari — Space Invaders



CNN, from screen to Joystick
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The Recipe

Connect game screen via CNN to a top layer,
of reasonable dimension.

Fully connected, to all possible user actions

Learn optimal Q-function Q*, maximizing
future game rewards

Batch experiences, and randomly sample a
batch, with experience replay

Iterate, until done.



Obvious Questions

State: screen transitions, not just one frame
— Four frames

Actions: how to start?
— Start with no action
— Force machine to wiggle it

Reward: what it is??
— Game score

Game Al will totally fail... in cases where these are not
sufficient...



Peek-forward to results.
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But first... Reinforcement Learning in
One Slide



Markov Decision Process

Fully observable universe

State space S, action space A

Transition probability function f: Sx A x S -> [0, 1.0]
Reward functionr: S x A x S -> Real

At a discrete time step t, given state s, controller
takes action a:

o according to control policy t: § -> A [which is
probabilistic]

Integrate over the results, to learn the (average)
expected reward.



Control Policy <-> Q-Function

* Every control policy it has corresponding Q-
function

— Q: S x A -> Real

— Which gives reward value, given state s and action aq,
and assuming future actions will be taken with policy
TT.

* Our goalis to learn an optimal policy
— This can be done by learning an optimal Q* function
— Discount rate y for each time-step t

. s -— 3
() (s5.a)= mm:,;:;[r,, + 11 Y 2+ L |5 =5, dr=a, H].,

(maximum discount reward, over all control policies m.)



Q-learning

e Start with any Q, typically all zeros.

* Perform various actions in various states, and
observe the rewards.

* |terate to the next step estimate of Q*
— a = learning rate

O-+1(%k, ) = O (g, 1)+
O [ree1 + ymax O (x4 1,4") — Qu(xr, )]



Dammit, this is a bit complicated.



Good artists COPY.
Great artists STEAL.

pie

Let’s steal excellent slides from David Silver,
University College London, and DeepMind



Observation, Action & Reward

Lecture 1: Introduction to Reinforcement Learning

l The RL Problem
&7

Environments

Agent and Environment

observation ' J N ki p N ) action

o B0k S T a m At each step t the agent:
W m Executes action A,

m Receives observation O;
m Receives scalar reward R;

m The environment:
m Receives action A;
m Emits observation O;
m Emits scalar reward R;.q

m t increments at env. step




Measurable Progress

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
L Reward

Examples of Rewards

m Fly stunt manoeuvres in a helicopter

m +ve reward for following desired trajectory
m —ve reward for crashing

m Defeat the world champion at Backgammon
m +/—ve reward for winning/losing a game
m Manage an investment portfolio
m +ve reward for each $ in bank
m Control a power station

m +ve reward for producing power
m —ve reward for exceeding safety thresholds

m Make a humanoid robot walk

m +ve reward for forward motion
m —ve reward for falling over

m Play many different Atari games better than humans
m +/—ve reward for increasing/decreasing score



(Long-term) Greed is Good?

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
l—Rcward

Rewards

m A reward R; is a scalar feedback signal
m Indicates how well agent is doing at step t

m The agent's job is to maximise cumulative reward
Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

Do you agree with this statement?



Markov State = Memory not Important

Lecture 1: Introduction to Reinforcement Learning
L-The RL Problem
I—51:51‘cr'_

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

A state S; is Markov if and only if

m “The future is independent of the past given the present”
Hl:t — St — Ht—I—l:-:x;

Once the state is known, the history may be thrown away
i.e. The state is a sufficient statistic of the future

The environment state S7 is Markov

The history H; is Markov



Rodentus Sapiens: Need-to-Know Basis

Lecture 1: Introduction to Reinforcement Learning
l The RL Problem
I*Statc

Rat Example

m What if agent state = last 3 items in sequence?
m What if agent state = counts for lights, bells and levers?

m What if agent state = complete sequence?



MDP: Policy & Value

Setting up complex problem as Markov Decision
Process (MDP) involves tradeoffs

Once in MDP, there is an optimal policy for
maximizing rewards

And thus each environment state has a value
— Follow optimal policy forward, to conclusion, or o<

Optimal policy <-> “true value” at each state



Chess Endgame Database

Howve Yalue

Kot Win in & "
Qa6+ Win in h

Qoo+ Win in 8

Qg Win in 8

Qah+ Win in 8

Qoh Win in 9

Keh Win in 10

Kda Win in 10
Qgl Win in 10

Ket Win in 11

Qf2 Win in 13

Ked Win in 14

Qd4a Win in 146

Kch Draw

Qxhbhh Draw

Qebd Lose in 2?8
Qfa Lo=e in 15 =
P Trhca 41 1K i
(®) white to move

CJ Black to maowve

If value is known, easy to pursue optimal policy.




Policy: Simon Says

Lecture 1: Introduction to Reinforcement Learning
l Inside An RL Agent

Policy

m A policy is the agent's behaviour
m It is a map from state to action, e.g.
m Deterministic policy: a = 7(s)

m Stochastic policy: 7(als) = P[A; = a|S; = 5]



Value: Simulate Future States,
Sum Future Rewards

Lecture 1: Introduction to Reinfor
|

Inside An RL Agent

Value Function

m Value function is a prediction of future reward
m Used to evaluate the goodness/badness of states

m And therefore to select between actions, e.g.

V?T(S) — EW {RH_]_ + "]r"Rt_|_2 + ’}"2 Rr+3 + ... ‘ St — S}

Familiar to stock market watchers: discounted future dividends.



Simple Maze

Lecture 1: Introduction to Reinforcement Learning
| Inside An RL Agent

Maze Example

Start
m Rewards: -1 per time-step

m Actions: N, E, S, W

m States: Agent’s location

Goal




Maze Policy

Lecture 1: Introduction to Reinforcement Learning
L Inside An RL Agent

Maze Example: Policy

— > | oo

m Arrows represent policy 7(s) for each state s



Maze Value

Lecture 1: Introduction to Reinforcement Learning
l Inside An RL Agent

Maze Example: Value Function

m Numbers represent value v, (s) of each state s



OK, we get it. Policy & value.



Back to Atari

Lecture 1: Introduction to Reinforcement Learning

l Problems within RL

Atari Example: Reinforcement Learning

observation / ( action

0,

m Rules of the game are

unknown
il m Learn directly from
interactive game-play
\ m Pick actions on

joystick, see pixels
and scores




How Game Al Normally Works

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Atari Example: Planning

Rules of the game are known

Can query emulator
m perfect model inside agent’'s brain
m If | take action a from state s:

m what would the next state be?
m what would the score be?

Plan ahead to find optimal policy
m e.g. tree search

Heuristic to evaluate game state; tricks to prune the tree.



These seem radically different
approaches to playing games...



...but part of the Explore & Exploit
Continuum

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Exploration and Exploitation (2)

m Exploration finds more information about the environment
m Exploitation exploits known information to maximise reward

m It is usually important to explore as well as exploit



RL is Trial & Error

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Exploration and Exploitation (1)

m Reinforcement learning is like trial-and-error learning
m The agent should discover a good policy
m From its experiences of the environment

m Without losing too much reward along the way



E&E Present in (most) Games

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Examples

m Restaurant Selection

Exploitation Go to your favourite restaurant
Exploration Try a new restaurant

m Online Banner Advertisements

Exploitation Show the most successful advert
Exploration Show a different advert

m Qil Drilling

Exploitation Drill at the best known location
Exploration Drill at a new location

m Game Playing

Exploitation Play the move you believe is best
Exploration Play an experimental move



Back to Markov for a second...



Markov Reward Process (MRP)

Lecture 2: Markov Decision Processes
I—Markc:v Reward Processes

L mRrP

Markov Reward Process

A Markov reward process is a Markov chain with values.
A Markov Reward Process is a tuple (S, P, R.7)
m S is a finite set of states
m P is a state transition probability matrix,
Pssr =P[Str1 =5 | St = 5]
m R is a reward function, Rs = E[R¢+1 | St = 5]

m ~ is a discount factor, v € [0, 1]



MRP for a UK Student

o]

Lecture 2: Markov Decision Processes
L Markov Reward Processes
L MRP

Example: Student MRP

Sleep |-g—




Discounted Total Return

Lecture 2: Markov Decision Processes
L Markov Reward Processes
L Return

Return

The return G; is the total discounted reward from time-step t.

o0
Gt = Rep1 +7Rep2 + .. = Z’YerJrkﬂ
k=0

m The discount ~ € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v*R.

m This values immediate reward above delayed reward.

m 7 close to 0 leads to "myopic” evaluation
m v close to 1 leads to "far-sighted” evaluation



Discounting the Future —
We do it all the time.

Lecture 2: Markov Decision Processes
- Markov Reward Processes
L Return

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards

Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m It is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.



Short Term View

Lecture 2: Markov Decision Processes

L Markov Reward Processes

I—‘\-"alue Function

Example: State-Value Function for Student MRP (1)

v(s) for y =0




Long Term View

Lecture 2: Markov Decision Processes

I—l'darkcav Reward Processes

[ v

alue Function

Example: State-Value Function for Student MRP (2)

v(s) for y =0.9




Back to Q*



Q-Learning in One Slide

Lecture 5: Model-Free Control

l Off-Policy Learning

LQ-Learning

We now consider off-policy learning of action-values Q(s, a)

No importance sampling is required

=
|
m Next action is chosen using behaviour policy A¢y1 ~ p(-|St)
m But we consider alternative successor action A" ~ 7(-|S¢)

O

And update Q(S¢, A¢) towards value of alternative action

Q(StaAt) L Q(StsAt) + (Ru—l - T%Q(Stu- A’) a Q(StaAt))

Each step: we adjust Q toward observations, at learning rate a.



Q-Learning Control:
Simulate every Decision

Lecture 5: Model-Free Control
l Off-Policy Learning
—Q-Learning

Q-Learning Control Algorithm

Q(S,A) «+ Q(S,A) + « (R +7y max Q(S',a) — Q(S. A))

Theorem

Q-learning control converges to the optimal action-value function,
Q(s,a) — g«(s,a)



Q-Learning Algorithm

Lecture 5: Model-Free Control
l Off-Policy Learning
—Q-Learning

Q-Learning Algorithm for Off-Policy Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + n[ﬁ’. + v max, Q(S’,a) — Q(S, A)}
S« 5

until S is terminal

Or learn on-policy, by choosing states non-randomly.



Think Back to Atari Videos

e By default, the system takes default action (no
action).

* Unless rewards are observed (a few steps)
from actions, the system moves (toward
solution) very slowly.



Back to the CNN...



CNN, from screen (S) to Joystick (A)
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Four Frames =2 256 hidden units

Lecture 6: Value Function Approximation
L-Batch Methods

l Least Squares Prediction

DQN in Atari

m End-to-end learning of values Q(s, a) from pixels s

m Input state s is stack of raw pixels from last 4 frames
m Output is Q(s, a) for 18 joystick/button positions

m Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear
output layer
16 Bx8 filcers
4xB4xB4
-
Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games



Experience Replay

Simply, batch training.

Feed in a bunch of transitions, compute new
approximating of Q*, assuming current policy

Don’t adjust Q, after every data point.

Pre-compute some changes for a bunch of states,
then pull a random batch from the database.



Experience Replay (Batch train): DON

Lecture 6: Value Function Approximation
t—Batch Methods

L -Least Squares Prediction

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

m Take action a; according to e-greedy policy

m Store transition (s¢, a¢, rt+1, St+1) in replay memory D

m Sample random mini-batch of transitions (s, a, r,s’) from D
m Compute Q-learning targets w.r.t. old, fixed parameters w™

m Optimise MSE between Q-network and Q-learning targets

‘Ci( Wi) = Es.a.r.s’~D,~

a

2
(r + 7 max Q(s’.a;w ) — Q(s, a; w,-)) ]

m Using variant of stochastic gradient descent



Experience Reply with SGD

Lecture 6: Value Function Approximation
- Batch Methods

l Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of (state, value) pairs

D —= {(51_ vf) (Sz. V;) (ST. V-’})}

Repeat:
Sample state, value from experience

(s,v™) ~D
Apply stochastic gradient descent update

Aw = a(v™ — V(s,w))Vu (s, w)



Do these methods help?

Lecture 6: Value Function Approximation
L-Batch Methods

l Least Squares Prediction

How much does DQN help?

Replay Replay | No replay | No replay

Fixed-Q | Q-learning Fixed-Q | Q-learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894 .4 822.55 1003 275.81
Space Invaders | 1088.94 826.33 373.22 301.99

Yes. Quite a bit.

Units: game high score.
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Some Games Better Than Others

e ———— ) * Good at:

Star Gunner | (S . .

e — quick-moving, complex,
S| — short-horizon games

i

— Semi-independent trails
within the game

— Negative feedback on
failure

.
— Pinball
At human-level of abave

* Bad at:

— long-horizon games that
don’t converge

— Ms. Pac-Man

— Any “walking around”
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Montezuma: Drawing Dead

Can you see why?



Can DeepMind learn from chutes & ladders?
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How about Parcheesi?



Actions & Values

Value is in expected
(discount) score from
state

Breakout: value increases
as closer to medium-term
reward

Pong: action values
differentiate as closer to
ruin




Frames, Batch Sizes Matter

Hyperparameter Value Description
2 : Number of training cases over which each stochastic gradient descent (SGD) update
minibatch size 32 is computed.
replay memory size 1000000 SGD updates are sampled from this number of most recent frames.
i The number of most recent frames experienced by the agent that are given as input to
agent history length 4 6.0 hetwork
The frequency (measured in the number of parameter updates) with which the target
target network update frequency 19000 network is updated (this corresponds to the parameter C from Algorithm 1).
discount factor 0.99 Discount factor gamma used in the Q-learning update.
Sclish Febaat 4 Repeat each action selected by the agent this many times. Using a value of 4 results
P in the agent seeing only every 4th input frame.
The number of actions selected by the agent between successive SGD updates.
update frequency 4 Using a value of 4 results in the agent selecting 4 actions between each pair of
successive updates.
learning rate 0.00025 The learning rate used by RMSProp.
gradient momentum 0.95 Gradient momentum used by RMSProp.
squared gradient momentum 0.95 Squared gradient (denominator) momentum used by RMSProp.
min squared gradient 0.01 Constant added to the squared gradient in the denominator of the RMSProp update.
initial exploration 1 Initial value of € in €-greedy exploration.
final exploration 0.1 Final value of € in €-greedy exploration.
final exploration frame 1000000 Thle number of frames over which the initial value of € is linearly annealed to its final
value.
aSiay St die 50000 A uniform random policy is run for this number of frames before learning starts and the
piay resulting experience is used to populate the replay memory.
Maximum number of “do nothing" actions to be performed by the agent at the start of
no-op max 30

an episode.
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Addendum: Atari Setup w/ Stella

Select an item from the list ... 5 items found
[.-] |
[ALE-roms]

Breakout (1978) (Atari).bin

LS
Super Breakout (1982 - 1981) (Atari) [al.bin
Untitled.zip

v

Dir: "fDESktopfromsf

S e L oo | o | serece |




Addendum: ALE Atari Agent

o0 e

bash

Random Seed: Time
Game will

Epizode

1

Episode 2

Episode
Episode
Episode
Episode
Episode
Episode
Epizode
Episode

3
4
5
&)
7
g

9

18 ended, score:

be controlled

ended,
ended,
ended,
ended,
ended,
ended,
ended,
ended,
ended,

nikolatenkosiir:
nikolaienkosiir:
nikolatenkosdir:
nikolaienkosiir:
nikolaienkosiir:
nikolailenkosiir:
nikolaienkosiir:
nikolatenkosdir:
nikolatenkosiir:
nikolaienkosiir:
nikolatenkosiir:
nikolaienkosiir:
nikolatenkosdir:
nikolatenkosiir:
nikolaienkosiir:
nikolatenkosdir:
nikolaienkosiir:
nikolaienkosiir:
nikolatenkosiir:
nikolaienkosiir:

SCOre;
SCore;
SCore;
SCore;
SCore:
SCore;
SCore;
SCore;
SCOre;

ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4
ale_B_4

ale_0_4 — bash — 116x32
bash bash bash

by an internal agent.
120
55
225
2ra
155
24a
315
E5
155
250
kolyad
kolya}
kolyab
kolyal
kolyah
kolyad
kolval
kolyab
kolyal
kolyah
kolyad 1
kolyal
kolyab
kolyad
kolya}
kolyab
kolyal
kolyab
kolyad
kolval

compiled agent | I/O pipes

bash bash +

| saves frames



Addendum: (Video) Poker?

* Caninput be fully
connected to actions?

STRAIGHT FLUSH 150 200 \ . g .

008 OEA e N = el Atari games played one
FLUSH 18 24 X R

STRAIGHT 12 16 . b

TH'F\?EEOFAKIND 9 12 Utton at a tlme.

TWO PAIRS B 8
JACKS OR BETTER 3 4 5

CLICK ON CARDS TO HOLD

* Here, we choose which
cards to keep.

e Remember Montezuma’s
Revenge!



Addendum: Poker Transition

46‘

How does one encode this for RL?

OpenCV easy for image generation.



