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Motivations

“automatically convert unstructured information 
into useful, actionable knowledge”

“ability to learn for itself from experience”

“and therefore it can do stuff that maybe we don’t 
know how to program”

- Demi Hassabis



“If you play bridge, whist, whatever, I could 
invent a new card game…”

“and you would not start from scratch… there is 
transferable knowledge.”

Explicit 1st step toward self-learning intelligent 
agents, with transferable knowledge.



Why Games?

• Easy to create more data.

• Easy to compare solutions.

• (Relatively) easy to transfer knowledge 
between similar problems. 

• But not yet.



“idea is to slowly widen the domains. We have a 
prototype for this – the human brain. We can 
tie our shoelaces, we can ride cycles & we can 
do physics, with the same architecture. So we 
know this is possible.”

- Demis Hassbis



What They Did

• An agent, that learns to play any of 49 Atari 
arcade games

– Learns strictly from experience

– Only game screen as input

– No game-specific settings



DQN

• Novel agent, called deep Q-network (DQN)
– Q-learning (reinforcement learning)

• Choose actions to maximize “future rewards” Q-function

– CNN (convolution neural network)
• Represent visual input space, map to game actions

– Experience replay
• Batches updates of the Q-function, on a fixed set of observations

• No guarantee that this converges, or works very well.

• But often, it does.



DeepMind Atari -- Breakout



DeepMind Atari – Space Invaders 



CNN, from screen to Joystick



The Recipe

• Connect game screen via CNN to a top layer, 
of reasonable dimension.

• Fully connected, to all possible user actions

• Learn optimal Q-function Q*, maximizing 
future game rewards

• Batch experiences, and randomly sample a 
batch, with experience replay

• Iterate, until done.



Obvious Questions

• State: screen transitions, not just one frame
– Four frames

• Actions: how to start?
– Start with no action
– Force machine to wiggle it

• Reward: what it is??
– Game score

• Game AI will totally fail… in cases where these are not 
sufficient…



Peek-forward to results.

Space Invaders Seaquest



But first… Reinforcement Learning in 
One Slide



Fully observable universe

State space S, action space A

Transition probability function f: S x A x S -> [0, 1.0]

Reward function r: S x A x S -> Real

At a discrete time step t, given state s, controller 
takes action a:

o according to control policy π: S -> A [which is 
probabilistic]

Integrate over the results, to learn the (average) 
expected reward.

Markov Decision Process



• Every control policy π has corresponding Q-
function
– Q: S x A -> Real

– Which gives reward value, given state s and action a, 
and assuming future actions will be taken with policy 
π.

• Our goal is to learn an optimal policy 
– This can be done by learning an optimal Q* function

– Discount rate γ for each time-step t

Control Policy <-> Q-Function

(maximum discount reward, over all control policies π.)



Q-learning

• Start with any Q, typically all zeros.

• Perform various actions in various states, and 
observe the rewards.

• Iterate to the next step estimate of Q*

– α = learning rate



Dammit, this is a bit complicated.



Dammit, this is complicated.

Let’s steal excellent slides from David Silver, 
University College London, and DeepMind



Observation, Action & Reward



Measurable Progress



(Long-term) Greed is Good?



Markov State = Memory not Important



Rodentus Sapiens: Need-to-Know Basis



MDP: Policy & Value

• Setting up complex problem as Markov Decision 
Process (MDP) involves tradeoffs

• Once in MDP, there is an optimal policy for 
maximizing rewards

• And thus each environment state has a value
– Follow optimal policy forward, to conclusion, or ∞

• Optimal policy <-> “true value” at each state



Chess Endgame Database

If value is known, easy to pursue optimal policy.



Policy: Simon Says



Value: Simulate Future States,
Sum Future Rewards

Familiar to stock market watchers: discounted future dividends.



Simple Maze



Maze Policy



Maze Value



OK, we get it. Policy & value.



Back to Atari



How Game AI Normally Works

Heuristic to evaluate game state; tricks to prune the tree.



These seem radically different 
approaches to playing games…



…but part of the Explore & Exploit 
Continuum 



RL is Trial & Error



E&E Present in (most) Games



Back to Markov for a second…



Markov Reward Process (MRP)



MRP for a UK Student



Discounted Total Return



Discounting the Future –
We do it all the time.



Short Term View



Long Term View



Back to Q*



Q-Learning in One Slide

Each step: we adjust Q toward observations, at learning rate α.



Q-Learning Control: 
Simulate every Decision



Q-Learning Algorithm

Or learn on-policy, by choosing states non-randomly.



Think Back to Atari Videos

• By default, the system takes default action (no 
action).

• Unless rewards are observed (a few steps) 
from actions, the system moves (toward 
solution) very slowly.



Back to the CNN…



CNN, from screen (S) to Joystick (A)



Four Frames  256 hidden units



Experience Replay

• Simply, batch training. 

• Feed in a bunch of transitions, compute new 
approximating of Q*, assuming current policy

• Don’t adjust Q, after every data point.

• Pre-compute some changes for a bunch of states, 
then pull a random batch from the database.



Experience Replay (Batch train): DQN



Experience Reply with SGD



Do these methods help?

Units: game high score.

Yes. Quite a bit.



Finally… results… it works! 
(sometimes)

Space Invaders Seaquest



Some Games Better Than Others

• Good at:
– quick-moving, complex, 

short-horizon games
– Semi-independent trails 

within the game
– Negative feedback on 

failure
– Pinball

• Bad at:
– long-horizon games that 

don’t converge
– Ms. Pac-Man
– Any “walking around” 

game



Montezuma: Drawing Dead

Can you see why?



Can DeepMind learn from chutes & ladders?

How about Parcheesi?



Actions & Values

• Value is in expected 
(discount) score from 
state

• Breakout: value increases 
as closer to medium-term 
reward

• Pong: action values 
differentiate as closer to 
ruin



Frames, Batch Sizes Matter
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Addendum: Atari Setup w/ Stella



Addendum: ALE Atari Agent

compiled agent | I/O pipes | saves frames



Addendum: (Video) Poker?

• Can input be fully 
connected to actions?

• Atari games played one 
button at a time. 

• Here, we choose which 
cards to keep.

• Remember Montezuma’s 
Revenge!



Addendum: Poker Transition

How does one encode this for RL?

OpenCV easy for image generation.


