Deep Image: Scaling Up Image Recognition

Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, Gang Sun

Presented by: Jake Varley

Deep Image

- custom built supercomputer (Minwa)
- parallel algorithms for Minwa
- data augmentation techniques
- training with multi-scale high res images

Minwa: The Super Computer

It is possible that other approaches will yield the same results with less demand on the computational side. The authors of this paper argue that with more human effort being applied, it is indeed possible to see such results. However human effort is precisely what we want to avoid.

Minwa

36 server nodes each with:

- 2 6-core Xeon E5-2620 processors
- 4 Nvidia Tesla K40m GPU's
 - 12 Gb memory each
- 1 56GB/s FDR InfiniBand w/RDMA support

Remote Direct Memory Access

Direct memory access from the memory of one computer into that of another without involving either one's operating system.

Remote Direct Memory Access

No GPUDirect RDMA

GPUDirect RDMA

Minwa in total:

- 6.9TB host memory

- 1.7TB device memory

 0.6PFlops theoretical single precision peak performance. PetaFlop = 10^15

- Data Parallelism: distributing the <u>data</u> across multiple processors

- Model Parallelism: distribute the model across multiple processors

Data Parallelism

-Each GPU responsible for 1/Nth of a minibatch and all GPUs work together on same mini-batch

-All GPUs compute gradients based on local training data and a local copy of weights. They then exchange gradients and update the local copy of weights.

Butterfly Synchronization

GPU k receives the kth layer's partial gradients from all other GPUs, accumulates them and broadcasts the result

Lazy Update

Don't synchronize until corresponding weight parameters are needed

Model Parallelism

- Data Parallelism in convolutional layers

 Split fully connected layers across multiple GPUs

Scaling Efficiency

Scaling Efficiency

Data Augmentation

Previous Multi-Scale Approaches

Farabet et al. 2013

Multi-scale Training

- train several models at different resolutions

 combined by averaging softmax class posteriors

Image Resolution

- 224x224 vs 512x512

Advantage of High Res Input

Original image

	Low-resolution model			High-resolution model			
	Rank	Score	Class	Rank	Score	Class	
i	1	0.2287).2287 ant		0.103	lacewing	
	2	0.0997	damselfly	2	0.074	dragonfly	
1	3	0.057	nematode	3	0.074	damselfly	
	4	0.0546	chainlink fence	4	0.063	walking stic	
Ĩ	5	0.0522).0522 long-horned		0.039	long-horned	
ł	6	0.0307 walking stick		6	0.027	leafhopper	
ļ	7	0.0287	dragonfly	7	0.025	nail	
i	8	0.0267	tiger beetle	8	0.023	grasshopper	
	9	0.0225	doormat	9	0.019	ant	
	10	0.0198	flute	10	0.015	mantis	
	11	0.0198	grey whale	11	0.015	fly	
	12	0.0178	mantis	12	0.013	hammer	
	13	0.0171	lacewing	13	0.012	American	
b	14	0.0161	radiator	14	0.012	gar	
•	15	0.0161	scabbard	15	0.011	chainlink	
20.00	16	0.0157	slide rule	16	0.011	padlock	
	17	0.0148	fly	17	0.011	tree frog	
10	18	0.0129	leafhopper	18	0.011	cicada	
ALC: NO	19	0.0101	cucumber	19	0.01	screwdriver	
	20	0.0094	velvet	20	0.01	harvestman	

1 1

TT' 1

1 1

Difficult for low resolution

Complimentary Resolutions

Model	Error Rate
256 x 256	7.96%
512 x 512	7.42%
Average of both	6.97%

Architecture

6 models combined with simple averaging

- trained for different scales

Single model:

Layers # filters	Conv 1-2 64	Maxpool	Conv 12	3-4 8	Maxpool
Conv 2	7 5-6-7 256	Maxpool	Conv 8-9-10 512		Maxpool
Conv 1	1-12-13 512	Maxpool	FC 1-2 6144	FC 2 1000	Softmax

Robust to Transformations

Summary

Everything was done as simply as possible on a supercomputer.