Can neural nets learn programs?

Alex Graves
Greg Wayne
Ivo Danihelka

Contents

- 1. Introduction
- 2. Foundational Research
- 3. Neural Turing Machines
- 4. Experiments
- 5. Conclusions

 First application of Machine Learning to logical flow and external memory

- First application of Machine Learning to logical flow and external memory
- Extend the capabilities of neural networks by coupling them to external memory

- First application of Machine Learning to logical flow and external memory
- Extend the capabilities of neural networks by coupling them to external memory
- Analogous to TM coupling a finite state machine to infinite tape

- First application of Machine Learning to logical flow and external memory
- Extend the capabilities of neural networks by coupling them to external memory
- Analogous to TM coupling a finite state machine to infinite tape
- RNN's have been shown to be Turing-Complete, Siegelmann et al '95

- First application of Machine Learning to logical flow and external memory
- Extend the capabilities of neural networks by coupling them to external memory
- Analogous to TM coupling a finite state machine to infinite tape
- RNN's have been shown to be Turing-Complete, Siegelmann et al '95
- Unlike TM, NTM is completely differentiable

- Neuroscience and Psychology
 - Concept of "working memory": short-term memory storage and rule based manipulation
 - Also known as "rapidly created variables"

- Neuroscience and Psychology
 - Concept of "working memory": short-term memory storage and rule based manipulation
 - Also known as "rapidly created variables"
 - Observational neuroscience results in the prefrontal cortex and basal ganglia of monkeys

- Neuroscience and Psychology
- Cognitive Science and Linguistics
 - Al and Cognitive Science were contemporaneous in 1950's-1970's

- Neuroscience and Psychology
- Cognitive Science and Linguistics
 - Al and Cognitive Science were contemporaneous in 1950's-1970's
 - Two fields parted ways when neural nets received criticism, Fodor et al. '88
 - Incapable of "variable-binding"
 - eg "Mary spoke to John"
 - Incapable of handling variable sized input

- Neuroscience and Psychology
- Cognitive Science and Linguistics
 - Al and Cognitive Science were contemporaneous in 1950's-1970's
 - Two fields parted ways when neural nets received criticism, Fodor et al. '88
 - Motivated Recurrent Networks research to handle variable binding and variable length input

- Neuroscience and Psychology
- Cognitive Science and Linguistics
 - Al and Cognitive Science were contemporaneous in 1950's-1970's
 - Two fields parted ways when neural nets received criticism, Fodor et al. '88
 - Motivated Recurrent Networks research to handle variable binding and variable length input
 - Recursive processing hot debate topic in role inhuman evolution (Pinker vs Chomsky)

- Neuroscience and Psychology
- Cognitive Science ad Linguistics
- Recurrent Neural networks
 - Broad class of machines with distributed and dynamic state

- Neuroscience and Psychology
- Cognitive Science ad Linguistics
- Recurrent Neural networks
 - Broad class of machines with distributed and dynamic state
 - Long Short Term Memory RNN's designed to handle vanishing and exploding gradient

- Neuroscience and Psychology
- Cognitive Science ad Linguistics
- Recurrent Neural networks
 - Broad class of machines with distributed and dynamic state
 - Long Short Term Memory RNN's designed to handle vanishing and exploding gradient
 - Natively handle variable length structures

1. Reading

M_t is NxM matrix of memory at time t

1. Reading

- M_↑ is NxM matrix of memory at time t
- $-w_t$

$$\sum_{i} w_t(i) = 1, \qquad 0 \le w_t(i) \le 1, \, \forall i.$$

$$\mathbf{r}_t \longleftarrow \sum_i w_t(i) \mathbf{M}_t(i),$$

- 1. Reading
- 2. Writing involves both erasing and adding

$$\tilde{\mathbf{M}}_t(i) \longleftarrow \mathbf{M}_{t-1}(i) \left[\mathbf{1} - w_t(i) \mathbf{e}_t \right],$$

- 1. Reading
- 2. Writing involves both erasing and adding

$$\tilde{\mathbf{M}}_t(i) \longleftarrow \mathbf{M}_{t-1}(i) \left[\mathbf{1} - w_t(i) \mathbf{e}_t \right],$$

$$\mathbf{M}_t(i) \longleftarrow \tilde{\mathbf{M}}_t(i) + w_t(i) \mathbf{a}_t.$$

- 1. Reading
- 2. Writing involves both erasing and adding
- 3. Addressing

- 3. Addressing
 - 1. Focusing by Content
 - Each head produces key vector k_t of length M
 - Generated a content based weight $\mathbf{w_t}^c$ based on similarity measure, using 'key strength' β_t

$$w_t^c(i) \leftarrow rac{\exp\left(eta_t Kig[\mathbf{k}_t, \mathbf{M}_t(i)ig]
ight)}{\sum_j \exp\left(eta_t Kig[\mathbf{k}_t, \mathbf{M}_t(j)ig]
ight)}.$$
 $Kig[\mathbf{u}, \mathbf{v}ig] = rac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}.$

- 3. Addressing
 - 2. Interpolation
 - Each head emits a scalar interpolation gate g_t

$$\mathbf{w}_t^g \longleftarrow g_t \mathbf{w}_t^c + (1 - g_t) \mathbf{w}_{t-1}.$$

- 3. Addressing
 - 3. Convolutional shift
 - Each head emits a distribution over allowable integer shifts $\mathbf{s_t}$

$$\tilde{w}_t(i) \longleftarrow \sum_{j=0}^{N-1} w_t^g(j) \, s_t(i-j)$$

- 3. Addressing
 - 4. Sharpening
 - Each head emits a scalar sharpening parameter γ_t

$$w_t(i) \longleftarrow \frac{\tilde{w}_t(i)^{\gamma_t}}{\sum_j \tilde{w}_t(j)^{\gamma_t}}$$

• 3. Addressing (putting it all together)

- 3. Addressing (putting it all together)
 - This can operate in three complementary modes
 - A weighting can be chosen by the content system without any modification by the location system

- 3. Addressing (putting it all together)
 - This can operate in three complementary modes
 - A weighting can be chosen by the content system without any modification by the location system
 - A weighting produced by the content addressing system can be chosen and then shifted

- 3. Addressing (putting it all together)
 - This can operate in three complementary modes
 - A weighting can be chosen by the content system without any modification by the location system
 - A weighting produced by the content addressing system can be chosen and then shifted
 - A weighting from the previous time step can be rotated without any input from the content-based addressing system

- Controller Network Architecture
 - Feed Forward vs Recurrent

- Controller Network Architecture
 - Feed Forward vs Recurrent
 - The LSTM version of RNN has own internal memory complementary to M

- Controller Network Architecture
 - Feed Forward vs Recurrent
 - The LSTM version of RNN has own internal memory complementary to M
 - Hidden LSTM layers are 'like' registers in processor

Neural Turing Machines

- Controller Network Architecture
 - Feed Forward vs Recurrent
 - The LSTM version of RNN has own internal memory complementary to M
 - Hidden LSTM layers are 'like' registers in processor
 - Allows for mix of information across multiple time-steps

Neural Turing Machines

- Controller Network Architecture
 - Feed Forward vs Recurrent
 - The LSTM version of RNN has own internal memory complementary to M
 - Hidden LSTM layers are 'like' registers in processor
 - Allows for mix of information across multiple time-steps
 - Feed Forward has better transparency

 Test NTM's ability to learn simple algorithms like copying and sorting

- Test NTM's ability to learn simple algorithms like copying and sorting
- Demonstrate that solutions generalize well beyond the range of training

- Test NTM's ability to learn simple algorithms like copying and sorting
- Demonstrate that solutions generalize well beyond the range of training
- Tests three architectures
 - NTM with feed forward controller
 - NTM with LSTM controller
 - Standard LSTM network

- 1. Copy
 - Tests whether NTM can store and retrieve data
 - Trained to copy sequences of 8 bit vectors
 - Sequences vary between 1-20 vectors

• 1. Copy

- 1. Copy
 - NTM

- 1. Copy
 - LSTM

• 1. Copy

- 2. Repeat Copy
 - Tests whether NTM can learn simple nested function
 - Extend copy by repeatedly copying input specified number of times
 - Training is a random-length sequence of 8 bit binary inputs plus a scalar value for # of copies
 - Scalar value is random between 1-10

• 2. Repeat Copy

Figure 7: Repeat Copy Learning Curves.

• 2. Repeat Copy

• 2. Repeat Copy

- 3. Associative Recall
 - Tests NTM's ability to associate data references
 - Training input is list of items, followed by a query item
 - Output is subsequent item in list
 - Each item is a three sequence 6-bit binary vector
 - Each 'episode' has between two and six items

• 3. Associative Recall

Figure 10: Associative Recall Learning Curves for NTM and LSTM.

• 3. Associative Recall

Figure 11: Generalisation Performance on Associative Recall for Longer Item Sequences. The NTM with either a feedforward or LSTM controller generalises to much longer sequences of items than the LSTM alone. In particular, the NTM with a feedforward controller is nearly perfect for item sequences of twice the length of sequences in its training set.

• 3. Associative Recall

- 4. Dynamic N-Grams
 - Test whether NTM could rapidly adapt to new predictive distributions
 - Trained on 6-gram binary pattern on 200 bit sequences
 - Can NTM learn optimal estimator

$$P(B=1|N_1, N_0, \mathbf{c}) = \frac{N_1 + \frac{1}{2}}{N_1 + N_0 + 1}$$

• 4. Dynamic N-Grams

Figure 13: Dynamic N-Gram Learning Curves.

• 4. Dynamic N-Grams

• 4. Dynamic N-Grams

- 5. Priority Sort
 - Tests whether NTM can sort data
 - Input is sequence of 20 random binary vectors,
 each with a scalar rating drawn from [-1, 1]
 - Target sequence is 16-highest priority vectors

• 5. Priority Sort

• 5. Priority Sort

• 5. Priority Sort

- 6. Details
 - RMSProp algorithm
 - Momentum 0.9
 - All LSTM's had three stacked hidden layers

• 6. Details

Task	#Heads	Controller Size	Memory Size	Learning Rate	#Parameters
Сору	1	100	128×20	10^{-4}	17, 162
Repeat Copy	1	100	128×20	10^{-4}	16,712
Associative	4	256	128×20	10^{-4}	146,845
N-Grams	1	100	128×20	$3 imes 10^{-5}$	14,656
Priority Sort	8	512	128×20	3×10^{-5}	508,305

Table 1: NTM with Feedforward Controller Experimental Settings

• 6. Details

Task	#Heads	Controller Size	Memory Size	Learning Rate	#Parameters
Сору	1	100	128 × 20	10^{-4}	67, 561
Repeat Copy	1	100	128×20	10^{-4}	66,111
Associative	1	100	128×20	10^{-4}	70,330
N-Grams	1	100	128×20	$3 imes 10^{-5}$	61,749
Priority Sort	5	2×100	128×20	3×10^{-5}	269,038

Table 2: NTM with LSTM Controller Experimental Settings

• 6. Details

Task	Network Size	Learning Rate	#Parameters
Сору	3×256	3×10^{-5}	1,352,969
Repeat Copy	3×512	3×10^{-5}	5,312,007
Associative	3 imes 256	10^{-4}	1,344,518
N-Grams	3×128	10^{-4}	331,905
Priority Sort	3×128	3×10^{-5}	384,424

Table 3: LSTM Network Experimental Settings

Conclusion

- Introduced an neural net architecture with external memory that is differentiable end-toend
- Experiments demonstrate that NTM are capable of leaning simple algorithms and are capable of generalizing beyond training regime

"Again, it [the Analytical Engine] might act upon other things besides numbers... the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent." — Ada Lovelace