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Introduction

* First application of Machine Learning to logical
flow and external memory

* Extend the capabilities of neural networks by
coupling them to external memory

* Analogous to TM coupling a finite state
machine to infinite tape

* RNN’s have been shown to be Turing-
Complete, Siegelmann et al ‘95

* Unlike TM, NTM is completely differentiable
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— Concept of “working memory”: short-term
memory storage and rule based manipulation

— Also known as “rapidly created variables”

— Observational neuroscience results in the pre-
frontal cortex and basal ganglia of monkeys
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Foundational Research

* Neuroscience and Psychology
* Cognitive Science and Linguistics

— Al and Cognitive Science were contemporaneous
in 1950’s-1970’s

— Two fields parted ways when neural nets received
criticism, Fodor et al. ‘88

— Motivated Recurrent Networks research to handle
variable binding and variable length input

— Recursive processing hot debate topic in role
inhuman evolution (Pinker vs Chomsky)
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Foundational Research

* Neuroscience and Psychology
* Cognitive Science ad Linguistics

e Recurrent Neural networks

— Broad class of machines with distributed and
dynamic state

— Long Short Term Memory RNN’s designed to
handle vanishing and exploding gradient

— Natively handle variable length structures
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1. Reading
— M, is NxM matrix of memory at time t

Y wy(i)=1,  0<wy(i) <1, Vi

r, <— Z wy (1) M, (7),
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1. Reading
2. Writing involves both erasing and adding

M, (1) +— M1 (3) [1 — we(3)ey]

M, () +— ML(3) +wy(i) a;
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1. Reading
2. Writing involves both erasing and adding
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Neural Turing Machines

e 3. Addressing

— 1. Focusing by Content
* Each head produces key vector k, of length M

* Generated a content based weight w,*based on
similarity measure, using ‘key strength’ B,

exp (ﬁtK[kt, Mt(i)])
=, exp (8Kl M.G)] )

K[u,v] = bl

[[alf - lv]]



Neural Turing Machines

e 3. Addressing

— 2. Interpolation
* Each head emits a scalar interpolation gate g,

wi «— g:wi + (1 — gs)Wy_1.
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e 3. Addressing

— 3. Convolutional shift

* Each head emits a distribution over allowable integer
shifts s,



Neural Turing Machines

e 3. Addressing
— 4. Sharpening

* Each head emits a scalar sharpening parameter y,
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Neural Turing Machines

e 3. Addressing (putting it all together)

— This can operate in three complementary modes

* A weighting can be chosen by the content system
without any modification by the location system

* A weighting produced by the content addressing
system can be chosen and then shifted

* A weighting from the previous time step can be rotated

without any input from the content-based addressing
system
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Neural Turing Machines

e Controller Network Architecture
— Feed Forward vs Recurrent

— The LSTM version of RNN has own internal
memory complementary to M

— Hidden LSTM layers are ‘like’ registers in
processor

— Allows for mix of information across multiple
time-steps

— Feed Forward has better transparency



Experiments

 Test NTM'’s ability to learn simple algorithms
like copying and sorting



Experiments

 Test NTM'’s ability to learn simple algorithms
ike copying and sorting

* Demonstrate that solutions generalize well
oeyond the range of training




Experiments

 Test NTM'’s ability to learn simple algorithms
ike copying and sorting

* Demonstrate that solutions generalize well
oeyond the range of training

* Tests three architectures
— NTM with feed forward controller
— NTM with LSTM controller
— Standard LSTM network



Experiments

* 1. Copy
— Tests whether NTM can store and retrieve data
— Trained to copy sequences of 8 bit vectors
— Sequences vary between 1-20 vectors
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Experiments

* 2. Repeat Copy

— Tests whether NTM can learn simple nested
function

— Extend copy by repeatedly copying input specified
number of times

— Training is a random-length sequence of 8 bit
binary inputs plus a scalar value for # of copies

— Scalar value is random between 1-10
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* 2. Repeat Copy
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Figure 7: Repeat Copy Learning Curves.
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* 2. Repeat Copy
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Experiments

* 2. Repeat Copy
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Experiments

* 3. Associative Recall
— Tests NTM’s ability to associate data references

— Training input is list of items, followed by a query
item

— Output is subsequent item in list
— Each item is a three sequence 6-bit binary vector
— Each ‘episode’ has between two and six items
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e 3. Associative Recall
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Figure 10: Associative Recall Learning Curves for NTM and LSTM.
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e 3. Associative Recall
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Figure 11: Generalisation Performance on Associative Recall for Longer Item Sequences.
The NTM with either a feedforward or LSTM controller generalises to much longer sequences
of items than the LSTM alone. In particular, the NTM with a feedforward controller is nearly
perfect for item sequences of twice the length of sequences in its training set.
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e 3. Associative Recall
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Experiments

* 4. Dynamic N-Grams

— Test whether NTM could rapidly adapt to new
predictive distributions

— Trained on 6-gram binary pattern on 200 bit
sequences

— Can NTM learn optimal estimator

M)
Ny + No +1

P(B — 1|N1,N0,C)



Experiments

* 4. Dynamic N-Grams
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Figure 13: Dynamic N-Gram Learning Curves.
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* 4. Dynamic N-Grams
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Experiments

* 4. Dynamic N-Grams
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Experiments

* 5. Priority Sort
— Tests whether NTM can sort data

— Input is sequence of 20 random binary vectors,
each with a scalar rating drawn from [-1, 1]

— Target sequence is 16-highest priority vectors
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* 5. Priority Sort
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Experiments

* 5. Priority Sort
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Experiments

* 6. Details
— RMSProp algorithm
— Momentum 0.9
— All LSTM’s had three stacked hidden layers



Experiments

* 6. Details
Task #Heads Controller Size Memory Size Learning Rate #Parameters
Copy 1 100 128 x 20 104 17,162
Repeat Copy 1 100 128 x 20 10—4 16,712
Associative 4 256 128 x 20 104 146, 845
N-Grams 1 100 128 x 20 3x107° 14,656
Priority Sort 8 512 128 x 20 3x107° 508, 305

Table 1: NTM with Feedforward Controller Experimental Settings



Experiments

e 6. Details
Task #Heads Controller Size Memory Size Learning Rate #Parameters
Copy 1 100 128 x 20 10—4 67,561
Repeat Copy 1 100 128 x 20 104 66,111
Associative 1 100 128 x 20 104 70, 330
N-Grams 1 100 128 x 20 3 x107° 61, 749
Priority Sort 5 2 x 100 128 x 20 3x107° 269, 038

Table 2: NTM with LSTM Controller Experimental Settings



Experiments

e 6. Details
Task Network Size Learning Rate #Parameters
Copy 3 x 256 3x 1073 1,352,969
Repeat Copy 3 x 512 3x107° 5,312,007
Associative 3 x 256 10~4 1,344,518
N-Grams 3 x 128 10~4 331,905
Priority Sort 3 x 128 3x107° 384,424

Table 3: LSTM Network Experimental Settings



Conclusion

* Introduced an neural net architecture with
external memory that is differentiable end-to-

end

* Experiments demonstrate that NTM are
capable of leaning simple algorithms and are
capable of generalizing beyond training
regime
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“Again, it [the Analytical Engine] might act upon other things besides
numbers... the engine might compose elaborate and scientific pieces of

music of any degree of complexity or extent. ” — Ada Lovelace



