A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi
rd2669

Department of Computer Science
Columbia University

Deep Learning for Computer Vision and Natural Language Processing
EECS 6894
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi
rd2669

Outline

Introduction
 Articles
 Motivation

Medical background
 Neurological Diseases
 MRI

Image processing pipeline
 Datasets
 Preprocessing
 Random Forest for Classification
 Results
Outline

Introduction
- Articles
- Motivation

Medical background
- Neurological Diseases
- MRI

Image processing pipeline
- Datasets
- Preprocessing
- Random Forest for Classification
- Results
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozir
d2669

Introduction

Articles

Motivation

Medical background
Neurological Diseases
MRI

Image processing pipeline
Datasets
Preprocessing
Random Forest for Classification
Results

Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression
Zhen Yang, Shenghua Zhong, Aaron Carass, Sarah H. Ying, and Jerry L. Prince
Johns Hopkins University

Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation
Youngjin Yoo, Tom Brosch, Anthony Traboulsee, David K.B. Li, and Roger Tam
University of British Columbia
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi
rd2669

Outline

Introduction
Articles
Motivation

Medical background
Neurological Diseases
MRI

Image processing pipeline
Datasets
Preprocessing
Random Forest for Classification
Results
Motivation

- MRI data
- Deep Learning + Machine Learning
- Different goals and barriers while same data type, hence a comparative study
 - Data description
 - Preprocessing
 - Methods and Algorithms used
 - Results
- Project: Diabetic Retinopathy Detection
- Personal reasons
Overview A neuro-degenerative disease
- Affects the cerebellum
- Symptoms: lack of muscular coordination

https://www.youtube.com/watch?v=5eBwn22Bnio

Goals:
Classify different types of Ataxia: HC, SCA2, SCA6, AT
Quantify functional loss based on structural change
Multiple sclerosis

Overview A inflammatory disease
- Brain cells damaged: Demyelination
- Symptoms: Mental, Physical, Psychatric troubles
- Cause: Genetic? Environmental factors?

https://www.youtube.com/watch?v=qgySDmRRzxY

Goals:
Automatic segmentation of lesionned areas
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi rd2669

Outline

Introduction
 Articles
 Motivation

Medical background
 Neurological Diseases
 MRI

Image processing pipeline
 Datasets
 Preprocessing
 Random Forest for Classification
 Results
MRI imaging

- Human body composed of small magnets
- Magnets aligned then excited by pulses
- Magnets go back to their lowest energy state, electromagnetic waves emitted
- Processing of these waves enable to reconstruct 3D structure, differentiate muscles tissues from fat, white matter from grey matter in the brain
A comparative study of deep learning based methods for MRI image processing

Introduction

Figure: Initial state

Figure: Excitation

Figure: Energy emission
Outline

Introduction
Articles
Motivation

Medical background
Neurological Diseases
MRI

Image processing pipeline
Datasets
Preprocessing
Random Forest for Classification
Results
Datasets

Ataxia

- 168 scans
- 3D Images projected on 9 plans (Resulting in 32 * 32 images)

Not enough labelled data ⇒ Interest of generating synthetic data

Multiple Sclerosis

- 1450 scans
- Resolution 256 * 256 * 50
- Only 100 scans segmented
 Lot of unlabelled data ⇒ Interest of unsupervised methods
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi
rd2669

Outline

Introduction
 Articles
 Motivation

Medical background
 Neurological Diseases
 MRI

Image processing pipeline
 Datasets
 Preprocessing
 Random Forest for Classification
 Results
Preprocessing

Ataxia

- 3D Images projected on 9 plans (Resulting in 32 * 32 images)
- Generate translated and rotated images
- Reduce dimensions using a Stacked Auto-Encoder for each plan

Multiple Sclerosis

- Images of resolution 256 * 256 * 50
- Patches 9 * 9 * 3 (low-scale features)
 ⇒ Train Restricted Boltzmann Machines for feature extraction
- Patches 15 * 15 * 5 (high-scale features)
 ⇒ Train Deep Belief Network for feature extraction
Stacked Auto-Encoder

- Target vector is the output
- Along the way, compression of the data
- Trained layer after layer (greedy)
Restricted Boltzmann Machines

- Visible and Hidden Units

- Energy Based Method

\[E(v, h) = -v^T Wh - a^T v - b^T h \]

\[P(v, h) = \frac{1}{Z} e^{-E(v, h)} \]
Restricted Boltzmann Machines
Restricted Boltzman Machines

How to train RBM? [Hinton 2002]

- Generate hidden units from visible units
- Generate visible units from these very hidden units
- Update weight:

\[
\Delta W_{i,j} = \alpha (< v_j, h_i >_{\text{input}} - < v_j, h_i >_{\text{generated data}})
\]
Deep Belief Networks [Hinton 2009]

- Stacked RBMs
- Greedy training
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi
rd2669

Outline

Introduction
 Articles
 Motivation

Medical background
 Neurological Diseases
 MRI

Image processing pipeline
 Datasets
 Preprocessing
 Random Forest for Classification
 Results
A comparative study of deep learning based methods for MRI image processing

Robert Dadashi-Tazehozi
rd2669

Introduction

Motivation

Medical background

Neurological Diseases

MRI

Image processing pipeline

Datasets

Preprocessing

Random Forest for Classification

Results

Classification

Ataxia

Multiple Sclerosis
Random Forests

- Bagging Data
- Selecting Features
- Generate Decision Tree

Averaging all the decision trees \Rightarrow Classifier
Outline

Introduction
 Articles
 Motivation

Medical background
 Neurological Diseases
 MRI

Image processing pipeline
 Datasets
 Preprocessing
 Random Forest for Classification
 Results
Results

Ataxia

<table>
<thead>
<tr>
<th>Method</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI volume PCA</td>
<td>16.25 ± 8.44</td>
</tr>
<tr>
<td>Image PCA</td>
<td>16.25 ± 11.86</td>
</tr>
<tr>
<td>Log-Jacobian PCA</td>
<td>22.50 ± 15.37</td>
</tr>
<tr>
<td>Proposed method with PCA</td>
<td>15.00 ± 11.49</td>
</tr>
<tr>
<td>Proposed method with SAE</td>
<td>13.75 ± 12.43</td>
</tr>
</tbody>
</table>

Multiple Sclerosis

Dice Similarity Measure:

\[d = \frac{2|Q \cap P|}{|Q| + |P|}\]

Weiss (state of the art): mean 29, std 13
Method: mean 38, std 19
Thank you for your attention!