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Previous Work in Object 
Detection

• Discriminative Part-based models: 

• Identifying parts of an object and their relation to identify the whole 

• Exploits domain knowledge. Uses HOG descriptors 

• Some NN approaches, but used as local classifiers, or incapable of 
distinguishing many instances of same class of object



Why DNN for Object 
Detection?

• Success of DNNs for related 
problem: image classification 

• A. Krizhevsky, I. Sutskever, G. 
Hinton. (2012). ImageNet 
Classification with Deep 
Convolutional Neural Networks 

• Can take advantage of the small 
shift-invariance in DNN image 
classification 

• Simpler models, easily extensible 
to new classes of objects

http://papers.nips.cc/paper/4824-imagenet


Deep Neural Networks for 
Object Detection

• This paper uses DNNs to classify and precisely locate 
objects of 20 classes (plane, bicycle, bird, boat, etc.) 

• Requires several applications of the DNNs 

• Obtains state-of-the-art performance on the Pascal 
VOC dataset



Detection



Detection
• For each object category X∈{plane, bicycle, bird, boat, etc.} 

• Input: Image. 

• Step 1: Generate binary masks using DNN specific to X 

• Step 2: Get bounding boxes from masks 

• Step 3: Refine bounding boxes 

• Output: Bounding boxes and confidence scores for all objects of type X in the 
image



Detection Step #1: Generate Binary Masks using DNN

• Same DNN structure as [A. Krizhevsky, I. Sutskever, G. 
Hinton. (2012). ImageNet Classification with Deep 
Convolutional Neural Networks] 

• 5 convolutional layers (3 with max pooling), 2 
connected layers, ReLu nonlinearities 

• Except: replace softmax classification layer (last layer) 
with a regression layer that produces a binary mask

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

http://papers.nips.cc/paper/4824-imagenet


Detection Step #1: Generate Binary Masks using DNN

• Same DNN structure as [A. Krizhevsky, I. Sutskever, G. 
Hinton. (2012). ImageNet Classification with Deep 
Convolutional Neural Networks] 

• 5 convolutional layers (3 with max pooling), 2 
connected layers, ReLu nonlinearities 

• Except: replace softmax classification layer (last layer) 
with a regression layer that produces a binary mask

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

http://papers.nips.cc/paper/4824-imagenet


Detection Step #1: Generate Binary Masks using DNN
• Actually, 5 DNNs trained per category 

• Full object mask, left half, bottom half, right half, top half 

• 5 masks are then merged to get the final mask 

• DNN inputs are 225x225 pixels. Output masks are 24x24 pixels
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at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
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neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5



• Compute these masks for many sub windows of the 
original image, at several scales 

• (Different than sliding window approach since 
usually need <40 windows per image)

Detection Step #1: Generate Binary Masks using DNN



Detection Step #2: Get Bounding Boxes

• Find the bounding boxes with best scores for the set of 
24x24px output masks  

• (exhaustive search. Sped up using integral images) 

• Map bounding box back to image space (note resolution loss)

Percentage of bounding box that 
overlaps with region h The complement of region h

bounding box maskscore



Detection Step #3: Refine bounding boxes 
• Crop original image to each bounding box 

• Repeat step #1 (Generate binary masks with DNN) on the cropped image 

• Repeat step #2 (Get bounding boxes) for the generated binary masks 

• Discard the bounding boxes that received a low score 

• Run the detected object through a classifier DNN and discard the corresponding 
bounding box if misclassified 

• Result: Final, fine-grained bounding boxes around the object with scores



Precision and Recall 
Before and After Refinement
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Figure 4: Precision recall curves of DetectorNet after the first stage and after the refinement.

0.5 to discard boxes. After the initial training, we performed two rounds of hard negative mining on
the training set. This added two million examples to our original training set and has cut down the
ratio of false positives.

The second approach is the 3-layer compositional model by [19] which can be considered a deep
architecture. As a co-winner of VOC2011 this approach has shown excellent performance. Finally,
we compare against the DPM by [9] and [11].

Although our comparison is somewhat unfair, as we trained on the larger VOC2012 training set, we
show state-of-the art performance on most of the models: we outperform on 8 classes and perform
on par on other 1. Note that it might be possible to tune the sliding window to perform on par with
DetectorNet, however the sheer amount of network evaluations makes that approach infeasible while
DetectorNet requires only (#windows ⇥#mask types) ⇠ 120 crops per class to be evaluated. On
a 12-core machine, our implementation took about 5-6 secs per image for each class.

Contrary to the widely cited DPM approach by [9], DetectorNet excels at deformable objects such
as bird, cat, sheep, dog. This shows that it can handle less rigid objects in a better way while working
well at the same time on rigid objects such as car, bus, etc.

We show examples of the detections in Fig. 3, where both the detected box as well as all five gen-
erated masks are visualized. It can be seen that the DetectorNet is capable of accurately finding
not only large but also small objects. The generated masks are well localized and have almost no
response outside the object. Such high-quality detector responses are hard to achieve and in this
case are possible because of the expressive power of the DNN and its natural way of incorporating
context.

The common misdetections are due to similarly looking objects (left object in last row of Fig. 3)
or imprecise localization (right object in last row). The latter problem is due to the ambiguous
definition of object extend by the training data – in some images only the head of the bird is visible
while in others the full body. In many cases we might observe a detection of both the body and face
if they are both present in the same image.

Finally, the refinement step contributes drastically to the quality of the detection. This can be seen in
Fig. 4 where we show the precision vs recall of DetectorNet after the first stage of detection and after
refinement. A noticeable improvement can be observed, mainly due to the fact that better localized
true positives have their score boosted.

8 Conclusion

In this work we leverage the expressivity of DNNs for object detector. We show that the simple
formulation of detection as DNN-base object mask regression can yield strong results when applied
using a multi-scale course-to-fine procedure. These results come at some computational cost at
training time – one needs to train a network per object type and mask type. As a future work we aim
at reducing the cost by using a single network to detect objects of different classes and thus expand
to a larger number of classes.

8

• Based on results on VOC2007 test data



Training



Training
• Needs a lot of training data: Objects of different sizes at 

almost every location 

• Use VOC2012 training and validation set (~11K images) 
for training 

• Remember: we need to train 2 types of DNNs: 

• 1) Mask generator DNN (maps images to binary 
masks) 

• 2) Classifier DNN (used for final pruning of detections)



1) Mask Generator Training
• Krizhevsky et al. ImageNet CNN with last layer 

replaced by regression layer 

• Minimize L2 error for predicting a ground truth mask 
m for an image x

...

mask
regression
layerDBN

full object mask left object mask top object mask

...

...

Figure 1: A schematic view of object detection as DNN-based regression.

DNN

DNN

object box 
extraction

object box 
extraction

refine

scale 1

scale 2

small set of boxes covering image merged object masks 

Figure 2: After regressing to object masks across several scales and large image boxes, we perform
object box extraction. The obtained boxes are refined by repeating the same procedure on the sub
images, cropped via the current object boxes. For brevity, we display only the full object mask,
however, we use all five object masks.

3 DNN-based Detection

The core of our approach is a DNN-based regression towards an object mask, as shown in Fig. 1.
Based on this regression model, we can generate masks for the full object as well as portions of
the object. A single DNN regression can give us masks of multiple objects in an image. To further
increase the precision of the localization, we apply the DNN localizer on a small set of large sub-
windows. The full flow is presented in Fig. 2 and explained below.

4 Detection as DNN Regression

Our network is based on the convolutional DNN defined by [14]. It consists of total 7 layers, the
first 5 of which being convolutional and the last 2 fully connected. Each layer uses a rectified linear
unit as a non-linear transformation. Three of the convolutional layers have in addition max pooling.
For further details, we refer the reader to [14].

We adapt the above generic architecture for localization. Instead of using a softmax classifier as a
last layer, we use a regression layer which generates an object binary mask DNN(x;⇥) 2 RN ,
where ⇥ are the parameters of the network and N is the total number of pixels. Since the output
of the network has a fixed dimension, we predict a mask of a fixed size N = d ⇥ d. After being
resized to the image size, the resulting binary mask represents one or several objects: it should have
value 1 at particular pixel if this pixel lies within the bounding box of an object of a given class and
0 otherwise.

The network is trained by minimizing the L2 error for predicting a ground truth mask m 2 [0, 1]N

for an image x:

min
⇥

X

(x,m)2D

||(Diag(m) + �I)1/2(DNN(x;⇥)�m)||22,

where the sum ranges over a training set D of images containing bounding boxed objects which are
represented as binary masks.

Since our base network is highly non-convex and optimality cannot be guaranteed, it is sometimes
necessary to regularize the loss function by using varying weights for each output depending on the

3

Regularizer in R+. 
When small, it penalizes all-zero masks Ground truth 

mask

Set of ground truth (image, mask) pairs Mask generator output

Vector of mask 
generator DNN 

parameters



1) Mask Generator Training
• Several thousand samples from each image (10M total) 

• 60% negative examples 

• outside of bounding box of any object of interest 

• 40% positive examples 

• each covers >80% of area of some ground truth bounding box of 
interest 

• Crops sampled so that cropWidth~Uniform(minScale, imageWidth)



2) Classifier Training
• Krizhevsky et al. ImageNet CNN 

• Several thousand samples per image (10M total) 

• 60% negative examples 

• each has <0.2 Jaccard-similarity with any ground truth box 

• acts as a 21st class in the classifier 

• 40% positive examples 

• each has >0.6 Jaccard-similarity with any ground truth box 

• labeled according to category of most similar bounding box

/Jaccard-similarity =



Final Notes on Training
• CNNs, max pooling, dropout 

• AdaGrad training 

• A type of adaptive learning rate for SGD 

• Training for localization harder than for classification, so they reuse 
the classification DNN weights for the localization DNN



Results



Results

class aero bicycle bird boat bottle bus car cat chair cow
DetectorNet1 .292 .352 .194 .167 .037 .532 .502 .272 .102 .348
Sliding windows1 .213 .190 .068 .120 .058 .294 .237 .101 .059 .131
3-layer model [19] .294 .558 .094 .143 .286 .440 .513 .213 .200 .193
Felz. et al. [9] .328 .568 .025 .168 .285 .397 .516 .213 .179 .185
Girshick et al. [11] .324 .577 .107 .157 .253 .513 .542 .179 .210 .240
class table dog horse m-bike person plant sheep sofa train tv
DetectorNet1 .302 .282 .466 .417 .262 .103 .328 .268 .398 .470
Sliding windows1 .110 .134 .220 .243 .173 .070 .118 .166 .240 .119
3-layer model [19] .252 .125 .504 .384 .366 .151 .197 .251 .368 .393
Felz. et al. [9] .259 .088 .492 .412 .368 .146 .162 .244 .392 .391
Girshick et al. [11] .257 .116 .556 .475 .435 .145 .226 .342 .442 .413

Table 1: Average precision on Pascal VOC2007 test set.

Figure 3: For each image, we show two heat maps on the right: the first one corresponds to the
output of DNN full, while the second one encodes the four partial masks in terms of the strength of
the colors red, green, blue and yellow. In addition, we visualize the estimated object bounding box.
All examples are correct detections with exception of the examples in the last row.

7 Experiments
Dataset: We evaluate the performance of the proposed approach on the test set of the Pascal Visual
Object Challenge (VOC) 2007 [7]. The dataset contains approx. 5000 test images over 20 classes.
Since our approach has large number of parameters, we train on the VOC2012 training and vali-
dation set which has approx. 11K images. At test time an algorithm produces for an image a set
of detections, defined bounding boxes and their class labels. We use precision-recall curves and
average precision (AP) per class to measure the performance of the algorithm.
Evaluation: The complete evaluation on VOC2007 test is given in Table 1. We compare our
approach, named DetectorNet, to three related approaches. The first is a sliding window version
of a DNN classifier by [14]. After training this network as a 21-way classifier (VOC classes and
background), we generate bounding boxes with 8 different aspect ration and at 10 different scales
paced 5 pixels apart. The smallest scale is 1/10-th of the image size, while the largest covers the
whole image. This results in approximately 150, 000 boxes per image. Each box is mapped affinely
to the 225 ⇥ 225 receptive field. The detection score is computed by the softmax classifier. We
reduce the number of the boxes by non-maximum suppression using Jaccard similarity of at least

1Trained on VOC2012 training and validation sets.

7

• Algorithm obtained state-of-the-art for VOC2007 (Pascal Visual Object Challenge 2007) 
dataset 

• Best detection for 8 of the 20 categories 

• Best detection for 5 out of 7 animal categories (bird, cat, cow, dog, sheep) 

• 5-6sec per image per class on a 12-core machine 

• More training data than others in this table. Unfair comparison?
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