
1. Problem Statement

2. Discussion of Several Methods

3. Our Approach

4. Experiments

5. Other Methods tried before

Overview

1

Problem Statement

1. Problem Statement

2. Discussion of Several Methods

3. Our Approach

4. Experiments

5. Other Methods tried before

Overview

3

● Add new classes directly, represented by red nodes

● Randomly initialize weights of the red connections

● Fine-tuning all weights on old & new training datasets

Recall Flat Expansion

4

Two directions

5

B. Focus on training data:

Curriculum Learning -> Adaptively adjust training dataset distribution

Extend -> AdaBoosting, Hard Negative Mining (just slightly better)

Extend -> Ensemble (work well)

A. Modify network structure / design loss function accordingly:

Super-class, sub-class; Attributes learning; Semantic embedding

1.Basically does not solve incremental learning problem

2.(More importantly) Focus on accuracy rather than efficiency

1. Problem Statement

2. Discussion of Several Methods

3. Our Approach

4. Experiments

5. Other Methods tried before

Overview

6

● Accuracy of new class; Accuracy of old class

● Efficiency - Training time: measured by the length of training point sequence,

equals to "number of images used in each training iteration" * "number of

iterations used for training”

● Observation: the straightforward approach -> Flat Expansion

● Conclusion: comparing with training from scratch, Flat Expansion already do

very well –

30 epoch (0.2711 Blue line) VS 1 epoch (0.2558 Blue line)

Justify: Observation

7

Justify: Motivation

8

● Training weak classifier is already very fast. So we focus on reducing the time

for improving weak classifier to strong classifier

● Basic idea:

1. Subsampling whole training datasets into several parts.

2. These several parts (sub dataset) have smaller number of training data. Use

each small training dataset to obtain a weak classifier respectively.

3. Then ensemble these weak CNN classifiers into strong classifier to obtain

comparable accuracy, or even higher accuracy.

● Why should work:

1. Training weak classifiers can be done quickly

2. Training dataset becomes smaller -> converge faster

3. Training each weak classifier is independent and can be done in parallel

Combine with Ensemble – Training

Train 1-th weak
classifier h1 on D1

𝑋
𝑋 ∪ 𝑋′

h1

Train 2-th weak
classifier h2 on D2

D2 h2

Train 3-th weak
classifier h3 on D3

D3 h3

𝐻

𝐻′

D1

𝑋′

Combine with Ensemble – Testing (output of H’)

10

testing data

h1

h2

h3

𝐻′

h1(X)

h2(X)

h3(X)

𝐻′ 𝑥 = max
𝑦

𝑗=1

3

ℎ𝑗 𝑥 == 𝑦 ∙ 𝐵𝑗

𝐵1

𝐵2

𝐵3

Currently, just set B1=B2=B3=1 to

do average voting.

1. Problem Statement

2. Discussion of Several Methods

3. Our Approach

4. Experiments

5. Other Methods tried before

Overview

11

 CIFAR-10: 10 classes. Each class has 5000 training images and 1000

testing images.

 Old model: Train on class 1~9, 5000 images per class

 New model: Add the new class –> class 10 with 5000 images. Now train the

new model on totally 50000 images.

 Rotate the new class from 1 to 10. At last average accuracy.

 Learning rate: 0.0001; each iteration takes 100 images.

Experiments

12

 Flat expansion: 5000 images per class (old & new)

 Ensemble-1000: 1000 images per class (old & new), ensemble 5 nets

 Ensemble-2000: 2000 images per class (old & new), ensemble 5 nets

 Testing dataset is same: 1000 images per class

 “Testing error rate” by “Training iterations”. Lower means better accuracy.

Experiments

 Comparing with the our model, in order to reach smaller error rate, how

many extra number of training iterations needed for flat expansion?

 We compute this extra number of training iterations for each model of

ensemble-1000 and ensemble-2000. And plot in next page.

Experiments - Other criteria

14

 Vertical axis: Comparing with the our model, in order to reach smaller error

rate, how many extra number of training iterations needed for flat expansion?

 Horizontal axis: How many training iterations used for training our model

 Positive value indicates our approach runs faster. Higher is better.

Experiments

15

Thank you!

16

1. Problem Statement

2. Discussion of Several Methods

3. Our Approach

4. Experiments

5. Other Methods tried before (If need discuss)

Overview

17

B. Attribute Learning

18

Label graph (Deng)
1. #Attributes fixed

2. Organize attributes nodes and

classes nodes as a label graph

3. Incremental learning problem

becomes adding new nodes in

the label graph

4. May improve accuracy but no

help or even hurt training speed

5. Incremental problem still

remains in the graph

C. Semantic Embedding

19

(NLP) DeViSE
1. Semantic Embedding means

using NLP tools to map class

label as a fixed size semantic

vector

2. Similarly as attribute learning

based method, replace

attributes with semantic

embedding

3. May improve accuracy but no

help or even hurt training speed

4. Incremental problem still

remains in the graph

 How to keep accuracy while further speed up flat expansion in the incremental

learning procedure?

 For CNNs, learning weak classifier is quick, while most of time takes on

learning strong classifier

 Boosting: using ensemble of weak classifiers as a strong classifier

 AdaBoosting involves adjusting data distribution, which is the key of our

adapted curriculum learning approach

Compare with AdaBoosting

20

Learn weak classifier Learn strong classifier

Our Approach AdaBoosting – 1. Training

21

Train 1-th weak
classifier h1 on D1

S1
S2

h1

Train 2-th weak
classifier h2 on D2

D2 h2

Init
1. Evaluate final h1 on D1

2. Adjust weights in distribution of S2 for data misclassified by h1

Train 3-th weak
classifier h3 on D3

D3 h3

Init

𝐻𝑖

𝐻𝑖+1

1. Evaluate final h2 on D2

2. Adjust weights in distribution of S2 for data misclassified by h2

D1 – All data point has same weights

Our Approach AdaBoosting – 2. Validation

22

Train 1-th weak
classifier h1 on D1

D1 – All data point has same weights

S1
S2

h1

Train 2-th weak
classifier h2 on D2

D2 h2

Init
1. Evaluate final h1 on D1

2. Adjust weights in distribution of S2 for data misclassified by h1

Train 3-th weak
classifier h3 on D3

D3 h3

Init

𝐻𝑖

𝐻𝑖+1

1. Evaluate final h2 on D2

2. Adjust weights in distribution of S2 for data misclassified by h2

Test final h1 on D1

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝜀1

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝜀1
𝜀1

Test final h2 on D2

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝜀2

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝜀2
𝜀2

Test final h3 on D3

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝜀3

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝜀3
𝜀3

AdaBoosting – Testing (output of Hi+1)

23
All testing data

h1

h2

h3

𝐻𝑖+1

h1(X)

Input: X

h2(X)

h3(X)

𝐻𝑖+1 𝑋 = max
𝑦

𝑗=1

3

ℎ𝑗 𝑋 == 𝑦 ∙ 𝐵𝑗

𝐵1

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝐸𝑖+1

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝐸𝑖+1
𝐸𝑖+1

Test 𝐻𝑖+1 on S2

𝐵2

𝐵3

 Old model is trained by 25000 images for classes 1-5 and the incremental

learning goal is to train CNN when 25000 new images for classes 6-10 are

added into the training dataset

 Training dataset during incremental training: 5000 images for each class.

Totally 50, 000 images.

 Init by model already trained for classes 1~5

 Net0: 21 epochs; Net1: 3 epochs; Net2: 1 epoch; Net3: 1 epoch

 Final testing error rate: 24.81%

Experiments – Ours

24

 Baseline1 (Training from scratch):

 Training dataset: 5000 images for

each class. Totally 50, 000

images.

 Learning rate = 0.0001

Experiments - Baselines

25

 Baseline2 (Flat expansion - Init

by model already trained for

class 1~5):

 Training dataset: 5000 images

for each class. Totally 50, 000

images.

 Learning rate = 0.0001

 Set learning rate as 0.0001

 Testing set: 10000 images. Class 1~10. 1000 images for each class.

 Evaluation: # training epochs needed to get testing error rate < 0.25

 Training from scratch: 39 epochs

 Flat expansion: 32 epochs

 Ours: 26 epochs (21-24-25-26)

Experiments - Comparisons

26

 Why should work: It is efficient to learn weak classifiers while it takes too long

to learn strong classifier. Boosting guarantees final accuracy. Also this

approach can learn new data for both old and new classes.

 Differences with AdaBoosting: In AdaBoosting, weak classifiers are

independent and learn from scratch; while in our each incremental procedure,

weak classifiers are related and have dependency.

 Differences with Hard Negative Mining: Hard Negative Mining only uses the

final classifier and updates distribution after each epoch; our approach

combines all weak classifiers and updates distribution after weak classifier is

learned.

Analysis & Comparison

27

