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● Add new classes directly, represented by red nodes

● Randomly initialize weights of the red connections

● Fine-tuning all weights on old & new training datasets

Recall Flat Expansion
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Two directions
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B. Focus on training data: 

Curriculum Learning -> Adaptively adjust training dataset distribution

Extend -> AdaBoosting, Hard Negative Mining (just slightly better)

Extend -> Ensemble (work well)

A. Modify network structure / design loss function accordingly:

Super-class, sub-class; Attributes learning; Semantic embedding

1.Basically does not solve incremental learning problem

2.(More importantly) Focus on accuracy rather than efficiency
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● Accuracy of new class; Accuracy of old class

● Efficiency - Training time: measured by the length of training point sequence, 

equals to "number of images used in each training iteration" * "number of 

iterations used for training”

● Observation: the straightforward approach -> Flat Expansion

● Conclusion: comparing with training from scratch, Flat Expansion already do 

very well –

30 epoch (0.2711 Blue line)        VS 1 epoch (0.2558 Blue line)

Justify: Observation
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Justify: Motivation
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● Training weak classifier is already very fast. So we focus on reducing the time 

for improving weak classifier to strong classifier

● Basic idea:

1. Subsampling whole training datasets into several parts.

2. These several parts (sub dataset) have smaller number of training data. Use 

each small training dataset to obtain a weak classifier respectively.

3. Then ensemble these weak CNN classifiers into strong classifier to obtain 

comparable accuracy, or even higher accuracy.

● Why should work:

1. Training weak classifiers can be done quickly

2. Training dataset becomes smaller -> converge faster

3. Training each weak classifier is independent and can be done in parallel



Combine with Ensemble – Training

Train 1-th weak 
classifier h1 on D1
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Train 2-th weak 
classifier h2 on D2

D2 h2
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Combine with Ensemble – Testing (output of H’)
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testing data

h1

h2

h3

𝐻′

h1(X)

h2(X)

h3(X)

𝐻′ 𝑥 = max
𝑦
 

𝑗=1

3

ℎ𝑗 𝑥 == 𝑦 ∙ 𝐵𝑗

𝐵1

𝐵2

𝐵3

Currently, just set B1=B2=B3=1 to 

do average voting.
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 CIFAR-10: 10 classes. Each class has 5000 training images and 1000 

testing images.

 Old model: Train on class 1~9, 5000 images per class

 New model: Add the new class –> class 10 with 5000 images. Now train the 

new model on totally 50000 images.

 Rotate the new class from 1 to 10. At last average accuracy.

 Learning rate: 0.0001; each iteration takes 100 images.

Experiments
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 Flat expansion: 5000 images per class (old & new)

 Ensemble-1000: 1000 images per class (old & new), ensemble 5 nets

 Ensemble-2000:  2000 images per class (old & new), ensemble 5 nets

 Testing dataset is same: 1000 images per class

 “Testing error rate” by “Training iterations”. Lower means better accuracy.

Experiments



 Comparing with the our model, in order to reach smaller error rate, how 

many extra number of training iterations needed for flat expansion?

 We compute this extra number of training iterations for each model of 

ensemble-1000 and ensemble-2000. And plot in next page.

Experiments - Other criteria
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 Vertical axis: Comparing with the our model, in order to reach smaller error 

rate, how many extra number of training iterations needed for flat expansion?

 Horizontal axis: How many training iterations used for training our model

 Positive value indicates our approach runs faster. Higher is better. 

Experiments
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Thank you!
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B. Attribute Learning
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Label graph (Deng)
1. #Attributes fixed 

2. Organize attributes nodes and 

classes nodes as a label graph

3. Incremental learning problem 

becomes adding new nodes in 

the label graph

4. May improve accuracy but no 

help or even hurt training speed

5. Incremental problem still 

remains in the graph



C. Semantic Embedding
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(NLP) DeViSE
1. Semantic Embedding means 

using NLP tools to map class 

label as a fixed size semantic 

vector

2. Similarly as attribute learning 

based method, replace 

attributes with semantic 

embedding

3. May improve accuracy but no 

help or even hurt training speed

4. Incremental problem still 

remains in the graph



 How to keep accuracy while further speed up flat expansion in the incremental 

learning procedure?

 For CNNs, learning weak classifier is quick, while most of time takes on 

learning strong classifier

 Boosting: using ensemble of weak classifiers as a strong classifier

 AdaBoosting involves adjusting data distribution, which is the key of our 

adapted curriculum learning approach

Compare with AdaBoosting
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Learn weak classifier Learn strong classifier



Our Approach AdaBoosting – 1. Training

21

Train 1-th weak 
classifier h1 on D1

S1
S2

h1

Train 2-th weak 
classifier h2 on D2

D2 h2

Init
1. Evaluate final h1 on D1

2. Adjust weights  in distribution of S2 for data misclassified by h1

Train 3-th weak 
classifier h3 on D3

D3 h3

Init

𝐻𝑖

𝐻𝑖+1

1. Evaluate final h2 on D2

2. Adjust weights  in distribution of S2 for data misclassified by h2

D1 – All data point has same weights



Our Approach AdaBoosting – 2. Validation
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Train 1-th weak 
classifier h1 on D1

D1 – All data point has same weights

S1
S2

h1

Train 2-th weak 
classifier h2 on D2

D2 h2

Init
1. Evaluate final h1 on D1

2. Adjust weights  in distribution of S2 for data misclassified by h1

Train 3-th weak 
classifier h3 on D3

D3 h3

Init

𝐻𝑖

𝐻𝑖+1

1. Evaluate final h2 on D2

2. Adjust weights  in distribution of S2 for data misclassified by h2

Test final h1 on D1

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝜀1

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝜀1
𝜀1

Test final h2 on D2

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝜀2

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝜀2
𝜀2

Test final h3 on D3

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝜀3

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝜀3
𝜀3



AdaBoosting – Testing (output of Hi+1)
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All testing data

h1

h2

h3

𝐻𝑖+1

h1(X)

Input: X

h2(X)

h3(X)

𝐻𝑖+1 𝑋 = max
𝑦
 

𝑗=1

3

ℎ𝑗 𝑋 == 𝑦 ∙ 𝐵𝑗

𝐵1

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 𝐸𝑖+1

𝐵𝑒𝑙𝑖𝑒𝑓 =
1 − 𝐸𝑖+1
𝐸𝑖+1

Test  𝐻𝑖+1 on  S2

𝐵2

𝐵3



 Old model is trained by 25000 images for classes 1-5 and the incremental 

learning goal is to train CNN when 25000 new images for classes 6-10 are 

added into the training dataset

 Training dataset during incremental training: 5000 images for each class. 

Totally 50, 000 images.

 Init by model already trained for classes 1~5

 Net0: 21 epochs; Net1: 3 epochs; Net2: 1 epoch; Net3: 1 epoch

 Final testing error rate: 24.81%

Experiments – Ours
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 Baseline1 (Training from scratch):

 Training dataset: 5000 images for 

each class. Totally 50, 000 

images.

 Learning rate = 0.0001

Experiments - Baselines
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 Baseline2 (Flat expansion - Init 

by model already trained for 

class 1~5):

 Training dataset: 5000 images 

for each class. Totally 50, 000 

images.

 Learning rate = 0.0001



 Set learning rate as 0.0001

 Testing set: 10000 images. Class 1~10. 1000 images for each class.

 Evaluation: # training epochs needed to get testing error rate < 0.25

 Training from scratch: 39 epochs

 Flat expansion: 32 epochs

 Ours: 26 epochs (21-24-25-26)

Experiments - Comparisons
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 Why should work: It is efficient to learn weak classifiers while it takes too long 

to learn strong classifier. Boosting guarantees final accuracy. Also this 

approach can learn new data for both old and new classes.

 Differences with AdaBoosting: In AdaBoosting, weak classifiers are 

independent and learn from scratch; while in our each incremental procedure, 

weak classifiers are related and have dependency.

 Differences with Hard Negative Mining: Hard Negative Mining only uses the 

final classifier and updates distribution after each epoch; our approach 

combines all weak classifiers and updates distribution after weak classifier is 

learned.

Analysis & Comparison
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