2-7 Triple Draw Poker: With
Learning

Nikolai Yakovenko
2/18/15
EE6894 Deep Learning Class



Overview

Problem: learn strategy to play 2-7 triple draw poker
Data: play against existing C-lang program that plays
pretty good & really fast

Why: poker is played by lots of people and for high
stakes

Why learning: heuristic-based algorithms only play so
well... and don’t adjust to small changes in the game
rules. Which happens a lot.

Speculate: reinforcement learning (Q-learning) to learn
policy for optimizing reward function. Neural net layer
between raw inputs and Q-learning algorithm.



2-7 Triple draw

Best hand Typical hand

Draw cards three times, to make 5 different low cards.



Sample Hand

iﬁ B Draw One Card E g

Final Hand — Seven Low

Opponent does same, and final hands compared.



Why Poker?

* There are 10x games played with same
mechanics, different rules

— Winner for high hand
— Winner for low hand
— Winner for badugi
— Split pot game (%2 low hand, %2 badugi)
* Also variations in betting, number of players at
the table, etc.

* Could we re-use original problem setup, but learn
totally different strategy for each variant?



Poker Data

e Algorithm can play itself.

* Also, | have C-lang program that plays triple
draw

— Brute force tree search, with optimization
— Optimizes for average value of final hand
— All final 5-card hands scored 0-1000 heuristic

 In the real world... sites like PokerStars have

billions of hands of real play, for most popular
variants.



Keep Game Really Simple

Triple draw, no betting
— Reward is +-1 for winning the hand

Triple draw, automatic bet per round (or can
fold)

— Reward is winning the chips if best hand, or
opponent folds

Can even start with single draw.

Important thing is setup for learning game
strategy, directly from game results.



Relevant Research

* For Poker:
— PokerSnowie: neural net from game-theory-optimal No Limit Hold’em

— “Limit Hold’em is Solve” — recent academic result (although possibly
not accurate)

— Can play neural-net limit Texas Hold’em machine for real S in Las Vegas
— No deep learning, focus on GTO for Hold’em
e Other games:
— Backgammon: neural nets dominant since the 1990’s
— Go: recent huge breakthrough vs best human players, using CNN
— Atari: famous DeepMind paper

— Flappy Bird: great example of Q-learning, for problem with simpler
game state



Speculate on Deep Learning

Reinforcement Learning (Q-learning, for example)
to learn a strategy for optimizing rewards

This requires representing game state s and s’
with full information about cards, actions

DeepMind paper shows how to turn raw state
into useful representation of s through neural net

layer

Also shows how to deal with noisy & delayed
“rewards”



Reinforcement Learning: Flappy

Inputs
515 a set of states
Als a set of actions
ythe discount
ris the step size
Local
real array Q/5,AJ
previous state s
previous action a
initialize GY3.A7arbitrarily
observe current state s
repeat
select and carry out an action 2
observe reward rand state s’
Ofs,a] —Qfs,al + afr+ ymax, Qfs'aj- adfs.al)

5 —s'until termination



But Flappy State Space is Simpler

e Distance from pipe
 Dead or alive
e Actions: tap or no tap




Conclusion

e Can we simplify poker game, but still keep it
the same game?

* And learn a strategy for drawing cards,
optimizing the hand, using neural net layer
that feeds into reinforcement learning?

* |f so... steps to real poker at world-class level,
for 100 different game variants... is
straightforward.



Thank you!

Who is interested?

Flappy Bird result:
http://sarvagyavaish.gith
ub.io/FlappyBirdRL/

DeepMind Atari paper:
http://arxiv.org/pdf/1312.
5602v1.pdf

2-7 Triple draw sample
hand:
http://www.clubpoker.net
/2-7-triple-draw/p-263



http://sarvagyavaish.github.io/FlappyBirdRL/
http://arxiv.org/pdf/1312.5602v1.pdf
http://www.clubpoker.net/2-7-triple-draw/p-263

