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Topic Models
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e LDA assumes that there are K topics shared by the collection.
e Each document exhibits the topics with different proportions.
e Each word is drawn from one topic.

e We discover the structure that best explain a corpus.
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Latent Variable Models
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e Our goal is to infer the hidden variables
e |.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments |documents)
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Bayesian Networks
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» Shaded variables are observed, other variables are hidden.
» A model is our hypothesis for how data are generated.

» We condition on observations to update our hypothesis.



Multimodal Documents

Typical cattle yard in Northern lowa, USA

A milking machine in action
accompanied by the decoupling of political power from
farm ownership.

farms also grow their own feed, typically including corn,

alfalfa, and hay. This is fed directly to the cows, or stored

as silage for use during the winter season. Additional di- 5.1 Forms of ()wnership

etary supplements are added to the feed to improve milk

production. oy In some societies (especially socialist and communist),
collective farming is the norm, with either government
ownership of the land or common ownership by a local

4.2 Poultry farms group. Especially in societies without widespread indus-
trialized farming, tenant farming and sharecropping are

Poultry farms are devoted to raising chickens (egg layers  common; farmers either pay landowners for the right to

or broilers), turkeys, ducks, and other fowl, generally for use farmland or give up a portion of the crops.

» We want to learn a topic model using text and images jointly.
> Images and text complement each other.
» Captions aren't the whole story: cows in political contexts.



Gaussian Topic Models with CNNs
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> Topics are (mixtures of ) Gaussians.
» Words are latent vectors A\, € RP" using Bayesian word2vec.

> Images are latent vectors v;, € RP" conditioned on raw images Xg;.
We have v,; ~ N(MCNNx(xpi; Q), %) with Q CNN parameters, M
mapping to word vector space, and CNN, feature representation
output by CNN.



Variational Bayesian EM
To learn latent variable models, maximize the marginal likelihood

max p(x}f) = / p(x,20)p(2]6) dz

This integral is intractable. Approximate instead with the evidence
lower bound (ELBO)

log p(x[0) = Eq(z|) [log p(x, 2|0) — log q(z|0)] =: L(6, ¢)
where q(z|) is a simple variational distribution which approximates the
posterior p(z|x, 9).
Variational Bayesian EM:
> E Step: Update ¢(t+1) < argmax, £(0(), ¢)
» M Step: Update #(t*1) « arg maxy £(6, ¢(9)
E step is variational Bayesian inference (Ranganath, Gerrish, and

D. M. Blei, 2014; Wang and D. M. Blei, 2013). M step is learning
(updating) a CNN with obJectlve

manL ye; CNNy (x;; Q)) 2 P ZE a(varlo(t)) [(vd, CNN(xqi; Q))z]



Why Do We Want to Do This?

v

Constructing an unsupervised, non-discrimantive, model

v

Difficult to measure performance (Wallach et al., 2009)

v

Unspervised data can lead to better vector construction

» " _..in general capture some distributional syntatic and
semantic information.” (Socher et al., 2013)

v

Can this lead to a semantic understanding of multimodal
data?



Related Methods
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» Use Deep Boltzmann Machines (Srivastava and
Salakhutdinov, 2014)

» Semi-supervised learning for effective generalization from
smaller data sets (Kingma et al., 2014)

» Deep Visual-Semantic Embedding Model (DeViSE), use both
unannotated text and trained image data for classification
(Frome et al., 2013)



Implementation and Applications

» Image and text modalities: corpa with images, annotated
images, images with captions

» Code EM algorithm with pretrained Caffe model and custom
objective, compare with performing SGD on CNN and
variational parameters jointly

» Explore other applications: modeling sub-topics, generalization
to tangential classes, or image queries and search.

» Topic models also used for social networks and
recommendation engines. Our method adds image features to
those models.

» Compare with other algorithms



Thank You

» Questions?
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