How to find innovative ideas for your project

Liangliang Cao

llcao.net/cu-deeplearning17

Frequent questions

•Is my idea a good one?

• How to find a good idea?

Criteria of "good work" (in reviewers' eyes)

1. Novel

2. Convincing

Criteria of "good work" (in reviewers' eyes)

1. Novel

- Bored reviewers want surprise!
- Has anyone done similar things before you?

2. Convincing

- Reviewers are suspicious.
- Reviewers want convincing insights and solid experiments (or solid math proof).

Smell of risk ideas

- Do something you are not excited or interested
 - Quickly you will find your time is wasted.
- Do it because it can be done
 - Where is the "impossible"?
- Overlook the previous literature
 - Where is the innovation?
- Very complicated pipeline at your first try
 - Some pieces may easily fall down.

Ramesh Raskar's Innovation Hexagon

Six ways of coming up with new ideas based on an idea 'X'.

What are good candidates of "X"s

- Successful applications or algorithms
- (Very) recently developed or
- Has been there for long but overlooked

Brainstorm list of good "X"s

Try to name 3+ by discussing with the students next to you

- Successful applications
 - Translation
 - Speech2text
 - Face recognition
 - Question answering
 - **–** ...

My list is strongly biased but hopefully could give you some idea

- Recent cool algorithm
 - Bach (re)normalization
 - Residual network ...
 - Generative Adversarial
 Networks (GAN) and
 Wasserstein GAN
 - Fast text
 - SqueezeNet
 - Distilling
 - Curriculum learning

Examples of innovation hexagon

Note a lot of following slides are courtesy to Ramesh Raskar

I only add some examples of deep learning research.

Strategy #1: X^d

- Extend it to next dimension (or some other) dimension
 - Flickr to Youtube
 - Images to infrared, sound, ultrasound to EM spectrum
- Example in deep learning
 Image based question answering
 => Album/video based QA

Strategy #2: X+Y

- Fusion of the dissimilar
 - More dissimilar, more spectacular the output
- Example
 - Scientific imaging + Photography
 - Coded aperture
 - Tomography
- Keys
 - Deep insights on why X + Y
 - The connection should be a surprise!
- Example of surprise:
 - Visually indicated sound

Strategy #3: X Do exactly the opposite

Straddle Method for High Jump

Replacement of landing surfaces with foam rubber

http://en.wikipedia.org/wiki/Dick_Fosbury

Strategy #3: X Do exactly the opposite

- From LSTM to word2vec
 - LSTM: long context and deep model
 - Word2vec: small window and shallow network

Word2vec works well for word embedding!

- From <u>Faster R-CNN</u> to <u>YOLO/SSD</u>
 - <u>Faster R-CNN</u>: object proposal as regions and then detect
 - YOLO/SSD: predict the bounding box simultaneously with detecting

YOLO/SSD are faster!

Strategy #4: X

- Given a Hammer ..
 - Find all the nails
 - Sometimes even screws and bolts
- Given a cool solution/technique/Opportunity
 - Find other problems

- Examples
 - CNN was first developed for vision
 - Now it has been used for speech and text classification

Strategy #5: X **↓**

- Given a nail,
 - Find all hammers
 - Sometimes even screwdrivers and pliers may work
- Discover a problem,
 - Find possible solutions

- Examples
 - AlphaGo

Strategy #6: X++

• Pick an adjective:

$$neXt = adjective + X$$

Examples:

- Faster: e.g., $\underline{R-CNN} \rightarrow \underline{Fast R-CNN} \rightarrow \underline{Faster R-CNN}$
- Cheaper: e.g., <u>AlexNet</u> -> <u>Squeeze Net</u>
- More efficient: e.g., Distilled learning
- •

Pitfalls

- These six ways are only a start
- They are good for projects which help you start your research career
- But
 - Significant innovations may not share a pattern
 - The risk of following patterns exists by creating a problem which does not exist in real
- The important thing is to develop your own deep insights
 - What is the true challenge?
 - How are you going to solve it?