How to find innovative ideas for your project

Liangliang Cao

llcao.net/cu-deeplearning17
Frequent questions

• Is my idea a good one?

• How to find a good idea?
Criteria of “good work” (in reviewers’ eyes)

1. Novel

2. Convincing
1. Novel

- Bored reviewers want surprise!
- Has anyone done similar things before you?

2. Convincing

- Reviewers are suspicious.
- Reviewers want convincing insights and solid experiments (or solid math proof).
Smell of risk ideas

• Do something you are not excited or interested
 • Quickly you will find your time is wasted.

• Do it because it can be done
 • Where is the “impossible”?

• Overlook the previous literature
 • Where is the innovation?

• Very complicated pipeline at your first try
 • Some pieces may easily fall down.
Six ways of coming up with new ideas based on an idea ‘X’.
What are good candidates of “X”s

- Successful applications or algorithms
- (Very) recently developed
 or
- Has been there for long but overlooked
Brainstorm list of good “X”s

Try to name 3+ by discussing with the students next to you

- Successful applications
 - Translation
 - Speech2text
 - Face recognition
 - Question answering
 - …

- Recent cool algorithm
 - Bach (re)normalization
 - Residual network …
 - Generative Adversarial Networks (GAN) and Wasserstein GAN
 - Fast text
 - SqueezeNet
 - Distilling
 - Curriculum learning

My list is strongly biased but hopefully could give you some idea
Examples of innovation hexagon

Note a lot of following slides are courtesy to Ramesh Raskar

I only add some examples of deep learning research.
Strategy #1: X^d

- Extend it to next dimension (or some other) dimension
 - Flickr to Youtube
 - Images to infrared, sound, ultrasound to EM spectrum

- Example in deep learning
 Image based question answering
 \Rightarrow Album/video based QA
Strategy #2: X+Y

• Fusion of the dissimilar
 – More dissimilar, more spectacular the output

• Example
 – Scientific imaging + Photography
 • Coded aperture
 • Tomography

• Keys
 – Deep insights on why X + Y
 – The connection should be a surprise!

• Example of surprise:
 – Visually indicated sound
Strategy #3: \(\boxed{X} \)

Do exactly the opposite

Replacement of landing surfaces with foam rubber

Straddle Method for High Jump
Strategy #3:

Do exactly the opposite

- From LSTM to word2vec
 - LSTM: long context and deep model
 - Word2vec: small window and shallow network
 Word2vec works well for word embedding!

- From Faster R-CNN to YOLO/SSD
 - Faster R-CNN: object proposal as regions and then detect
 - YOLO/SSD: predict the bounding box simultaneously with detecting
 YOLO/SSD are faster!
Strategy #4:

- Given a Hammer ..
 - Find all the nails
 - Sometimes even screws and bolts

- Given a cool solution/technique/Opportunity
 - Find other problems

- Examples
 - CNN was first developed for vision
 - Now it has been used for speech and text classification
Strategy #5:

- Given a nail,
 - Find all hammers
 - Sometimes even screwdrivers and pliers may work
- Discover a problem,
 - Find possible solutions

- Examples
 - AlphaGo
Strategy #6: X++

• Pick an adjective:

\[\text{neXt} = \text{adjective } + \text{ X} \]

Examples:
• Faster: e.g., R-CNN \rightarrow Fast R-CNN \rightarrow Faster R-CNN
• Cheaper: e.g., AlexNet \rightarrow Squeeze Net
• More efficient: e.g., Distilled learning
• …
Pitfalls

• These six ways are only a start
• They are good for projects which help you start your research career
• But
 – Significant innovations may not share a pattern
 – The risk of following patterns exists by creating a problem which does not exist in real
• The important thing is to develop your own deep insights
 • What is the true challenge?
 • How are you going to solve it?