Language Representation and Modeling

Kapil Thadani
kapil@cs.columbia.edu

YAHOO!
RESEARCH
Schedule

○ Language representation and modeling March 1
 - Sparse and distributional representations
 - word2vec and doc2vec
 - Task-specific representations
 - Language modeling

○ Encoder-decoder frameworks .. March 8
 - RNN units: LSTMs, GRUs
 - Sequence-to-sequence models
 - Attention mechanism
 - Copying mechanism
 - Scheduled sampling

○ Applications ... March 22
 - Parsing
 - Question-answering
 - Entailment
 - Machine reading
 - Dialog systems
Outline

○ Language representation
 - Bag of words
 - Distributional hypothesis
 - word2vec
 - doc2vec

○ Task-specific representations
 - Convolutional NNs
 - Recurrent NNs
 - Recursive NNs

○ Language modeling
 - Probabilistic and discriminative LMs
 - NNLM
 - RNNLMs
Formal language

(i) Set of sequences over symbols from an alphabet

- sentences
- words
- vocabulary
- utterances
- morphemes
- documents
- MWEs

(ii) Rules for valid sequences

- spelling
- orthography, morphology
- grammar
- syntax
- meaning
- semantics, discourse, pragmatics, ···
Natural language

(i) Set of sequences over symbols from an alphabet

- sentences
- words
- vocabulary
- utterances
- morphemes
- documents
- MWEs

(ii) Rules for valid sequences

- spelling
- orthography, morphology
- grammar
- syntax
- meaning
- semantics, discourse, pragmatics, ···
Lexical semantics

dog
Lexical semantics

- **Hypernymy**
 - dog
 - mammal
 - pet
 - canine

- **Meronymy**
 - dog
 - poodle
 - puppy
 - paw

- **Synonymy**
 - dog
 - canine

- **Holonymy**
 - dog
 - pack
Lexical semantics

- **mammal**
- **pet**
- **canine**
- **cat**
- **bark**
- **meronymy**
- **holonymy**
- **hyponymy**
- **synonymy**
- **opposition**
- **co-occurrence**
- **slang**
- **leash**
- **co-occurrence**
- **paw**
- **dawg**
- **poodle**
- **puppy**
Lexical semantics

- **Dog**
 - Hypernymy: Mammal, Pet
 - Hyponymy: Poodle, Puppy
 - Meronymy: Paw
 - Holonymy: Pack
 - Co-occurrence: Leash, Bark
 - Slang: Dawg
 - Opposition: Cat
 - Synonymy: Canine
 - Polysemy: Wretch, Frankfurter
 - Verb: Aggravate, Shadow
 - Name: "Dog the Bounty Hunter"
Sparse representations

Word: one-hot (1-of-V) vectors
Document: "bag of words"

Emphasize rare words with inverse document frequency (IDF)

Compare documents with cosine similarity

+ Simple and interpretable
 - No notion of word order
 - No implicit semantics
 - Curse of dimensionality with large $|V|$
Distributional approaches

Words that occur in similar contexts have similar meanings

e.g., record word co-occurrence within a context window over a large corpus

Weight association with pointwise mutual information (PMI), etc

\[
PMI(w_1, w_2) = \log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}
\]
Latent Semantic Analysis

Construct term-document matrix

\[M = \begin{pmatrix} w_1^{(1)} & w_1^{(2)} & \cdots \\ w_2^{(1)} & \cdots & \\ \vdots & \vdots & \ddots \end{pmatrix} \]

Singular value decomposition

\[M \approx u_1 u_2 u_3 \cdots \lambda_1 \lambda_2 \lambda_3 \cdots \]

Select top \(k \) singular vectors for \(k \)-dim embeddings of words/docs
word2vec

Continuous Bag-of-Words (CBOW)
 - Predict target w_t given context $w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c}$

$$
\ell(W, U) = -\log p(w_t|w_{t-c} \cdots w_{t+c})
$$

$$
p(w_j|w_{t-c} \cdots w_{t+c}) = \frac{e^{U_jh_t}}{\sum_k e^{U_kh_t}}
$$

$$
h_t = \frac{1}{2c} \sum_{i=0}^{c} W^\top w_{t+i}
$$

Input

Projection (averaged)

Softmax

Loss

Label
word2vec

Skip-gram

- Predict context $w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c}$ given target w_t

$$
p(w_j|w_t) = \frac{e^{U_j h_t}}{\sum_k e^{U_k h_t}}
$$

$$
h_t = W^T w_t
$$

$$
\ell(W, U) = -\sum_{i=-c}^{c} \log p(w_{t+i}|w_t)
$$
Cost of computing $\nabla p(w_j | \cdots)$ is proportional to V!

Alternative 1: Hierarchical softmax
- Predict path in binary tree representation of output layer
- Reduces to $\log_2(V)$ binary decisions

$$p(w_t = \text{“dog”} | \cdots) = (1 - \sigma(U_{0}h_t)) \times \sigma(U_{1}h_t) \times \sigma(U_{4}h_t)$$
Cost of computing $\nabla p(w_j | \cdots)$ is proportional to V!

Alternative 2: Negative sampling

- Change objective to differentiate target vector from noisy samples with logistic regression

$$\max \log \sigma(u_j^\top h_t) + \sum_{k=1}^{K} \mathbb{E}_{w_m \sim \Psi} \log \sigma(-u_m^\top h_t)$$

where $u_j = U_j = j$’th column of U

and $w_j \in \text{context}(w_t)$

- Noise distribution Ψ typically unigram, uniform or in between
- Number of samples K typically 5–20
word2vec

Linear relationships between related words

Mikolov et al. (2013)
Country and Capital Vectors Projected by PCA

Visualizing lexical relationships

word2vec

Mikolov et al. (2013)
word2vec

Mikolov et al. (2013)

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>France - Paris</td>
<td>Italy: Rome</td>
<td>Japan: Tokyo</td>
<td>Florida: Tallahassee</td>
</tr>
<tr>
<td>big - bigger</td>
<td>small: larger</td>
<td>cold: colder</td>
<td>quick: quicker</td>
</tr>
<tr>
<td>Miami - Florida</td>
<td>Baltimore: Maryland</td>
<td>Dallas: Texas</td>
<td>Kona: Hawaii</td>
</tr>
<tr>
<td>Einstein - scientist</td>
<td>Messi: midfielder</td>
<td>Mozart: violinist</td>
<td>Picasso: painter</td>
</tr>
<tr>
<td>Sarkozy - France</td>
<td>Berlusconi: Italy</td>
<td>Merkel: Germany</td>
<td>Koizumi: Japan</td>
</tr>
<tr>
<td>copper - Cu</td>
<td>zinc: Zn</td>
<td>gold: Au</td>
<td>uranium: plutonium</td>
</tr>
<tr>
<td>Berlusconi - Silvio</td>
<td>Sarkozy: Nicolas</td>
<td>Putin: Medvedev</td>
<td>Obama: Barack</td>
</tr>
<tr>
<td>Microsoft - Windows</td>
<td>Google: Android</td>
<td>IBM: Linux</td>
<td>Apple: iPhone</td>
</tr>
<tr>
<td>Microsoft - Ballmer</td>
<td>Google: Yahoo</td>
<td>IBM: McNealy</td>
<td>Apple: Jobs</td>
</tr>
<tr>
<td>Japan - sushi</td>
<td>Germany: bratwurst</td>
<td>France: tapas</td>
<td>USA: pizza</td>
</tr>
</tbody>
</table>

Analogical reasoning
Phrase analogies

<table>
<thead>
<tr>
<th>Newspapers</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>New York Times</td>
<td>Baltimore</td>
<td>Baltimore Sun</td>
<td>Cincinnati Enquirer</td>
</tr>
<tr>
<td>San Jose</td>
<td>San Jose Mercury News</td>
<td>Cincinnati</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NHL Teams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>Boston Bruins</td>
<td>Montreal</td>
<td>Montreal Canadiens</td>
<td></td>
</tr>
<tr>
<td>Phoenix</td>
<td>Phoenix Coyotes</td>
<td>Nashville</td>
<td>Nashville Predators</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NBA Teams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Detroit</td>
<td>Detroit Pistons</td>
<td>Toronto</td>
<td>Toronto Raptors</td>
<td></td>
</tr>
<tr>
<td>Oakland</td>
<td>Golden State Warriors</td>
<td>Memphis</td>
<td>Memphis Grizzlies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airlines</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Austrian Airlines</td>
<td>Spain</td>
<td>Spainair</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>Brussels Airlines</td>
<td>Greece</td>
<td>Aegean Airlines</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company executives</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Ballmer</td>
<td>Microsoft</td>
<td>Larry Page</td>
<td>Google</td>
<td></td>
</tr>
<tr>
<td>Samuel J. Palmisano</td>
<td>IBM</td>
<td>Werner Vogels</td>
<td>Amazon</td>
<td></td>
</tr>
</tbody>
</table>
word2vec
Mikolov et al. (2013)

<table>
<thead>
<tr>
<th>Czech + currency</th>
<th>Vietnam + capital</th>
<th>German + airlines</th>
<th>Russian + river</th>
<th>French + actress</th>
</tr>
</thead>
<tbody>
<tr>
<td>koruna</td>
<td>Hanoi</td>
<td>airline Lufthansa</td>
<td>Moscow</td>
<td>Juliette Binoche</td>
</tr>
<tr>
<td>Check crown</td>
<td>Ho Chi Minh City</td>
<td>carrier Lufthansa</td>
<td>Volga River</td>
<td>Vanessa Paradis</td>
</tr>
<tr>
<td>Polish zolty</td>
<td>Viet Nam</td>
<td>flag carrier Lufthansa</td>
<td>upriver Russia</td>
<td>Charlotte Gainsbourg</td>
</tr>
<tr>
<td>CTK</td>
<td>Vietnamese</td>
<td>Lufthansa</td>
<td>Russia</td>
<td>Cecile De</td>
</tr>
</tbody>
</table>

Additive compositionality
Skip-gram with negative sampling increases $u_j^T h_t$ for real word-context pairs $\langle w_t, w_j \rangle$ and decreases it for noise pairs.

Given:
- a matrix of d-dim word vectors $W (|V_w| \times d)$
- a matrix of d-dim context vectors $U (|V_u| \times d)$

Skip-gram is implicitly factorizing the matrix $M = WU^T$.

What is M?
- Word-context matrix where each cell (i, j) contains $PMI(w_i, w_j)$
- If number of negative samples $K > 1$, this is shifted by a constant $- \log K$
- (Assuming large enough d and iterations)
Beyond words

Can we add word vectors to make sentence/paragraph/doc vectors?

\[\text{doc } A = a_1 + a_2 + a_3 \]
\[\text{doc } B = b_1 + b_2 + b_3 \]

\[
\cos(A, B) = \frac{A \cdot B}{\|A\| \cdot \|B\|} \\
= \frac{1}{\|A\| \cdot \|B\|}(a_1 \cdot b_1 + a_1 \cdot b_2 + a_1 \cdot b_3 + a_2 \cdot b_1 + a_2 \cdot b_2 + a_2 \cdot b_3 + a_3 \cdot b_1 + a_3 \cdot b_2 + a_3 \cdot b_3)
\]

= weighted all-pairs similarity over \(A \) and \(B \)
Paragraph vector (a.k.a doc2vec)

Le & Mikolov (2014)

Distributed memory
- Predict target w_t given context $w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c}$ and doc label d_k
- At test time, hold U, W fixed and back-prop into expanded D

$$
\ell(W, U) = -\log p(w_t|w_{t-c} \cdots w_{t+c}, d_k)
$$

Diagram:
- w_t
- $\ell(W, U)$
- d_k
- Input
- D
- U
- Softmax
- Label
- Loss
- Projection (concatenated)
Paragraph vector (a.k.a doc2vec)

Distributed Bag-of-Words (DBOW)

- Predict target n-grams w_t, \ldots, w_{t+c} given doc label d_k
- At test time, hold U fixed and back-prop into expanded D

\[
\ell(W, U) = - \sum_{i=0}^{c} \log p(w_{t+i}|d_k)
\]
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Visitors saw her duck with binoculars.

Did she duck or does she *have* a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Did she duck or does she *have* a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Did she duck or does she *have* a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Semantics are elusive

Visitors saw her duck with binoculars.

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
Task-specific representations

Many NLP tasks fall into classification or sequence tagging

Classification
- Given variable-length text $w_1 \cdots w_n$ (sentence, document, etc), find label y
- Normal discriminative approach:
 - Extract features over the input text
 - Train a linear classifier

Tagging
- Given variable-length text $w_1 \cdots w_n$, label spans z_1, \ldots, z_m
- Normal discriminative approach:
 - Distribute labels over input words (e.g., BIO, BILOU encodings)
 - Extract features over input words
 - Train a linear-chain conditional random field
Convolutional NNs

SENNNA
- Part-of-speech tagging
- Chunking
- Named entity recognition
- Semantic role labeling

Figure 1: Window approach network.

Figure 2: Sentence approach network.
Convolutional NNs

- Max-over-time pooling
- Two input embedding “channels” — one updated during training
Convolutional NNs

R-CNNs

- Capture interactions between non-consecutive \(n \)-grams
 e.g., not bad, not so bad, not nearly as bad

- Each \(n \)-gram context vector includes a weighted average over prior \(n \)-gram states

\[
c_{ij} = U^\top (W_1 x_i \odot W_2 x_j)
\]

\[
c_t = \sum_{i<t} \lambda_t c_{it}
\]

\[
h_t = \tanh(c_t + b)
\]

- Exponential computations avoided by dynamic programming

- Averaging weight learned as a recurrent gate

\[
\lambda_t = \sigma(W_\lambda x_t + U_\lambda h_{t-1} + b)
\]
Recurrent NNs

- Flexible models for classification and/or tagging
- Typically used with LSTM units or GRUs
- Bidirectional RNNs better for long inputs
Recurrent NNs

- Flexible models for classification and/or tagging
- Typically used with LSTM units or GRUs
- Bidirectional RNNs better for long inputs
Recurrent NNs

- Flexible models for classification and/or tagging
- Typically used with LSTM units or GRUs
- Bidirectional RNNs better for long inputs
Recursive NNs (a.k.a Tree-RNNs)

- Computation graph follows dependency or constituent parse
- Child-sum:
 - Good for arbitrary fan-out or unordered children
 - Suited to dependency trees (input x_i is head word)
- N-ary:
 - Fixed number of children, each parameterized separately
 - Suited to binarized constituency parses (leaves take word inputs x_i)
Recursive NNs (a.k.a Tree-RNNs) - Computation graph follows dependency or constituent parse
- Child-sum:
 - Good for arbitrary fan-out or unordered children
 - Suited to dependency trees (input x_i is head word)
- N-ary:
 - Fixed number of children, each parameterized separately
 - Suited to binarized constituency parses (leaves take word inputs x_i)
Text generation

Probabilistic language modeling
- Distribution over sequences of words $p(w_1, \ldots, w_T)$ in a language
- Typically made tractable via conditional independence assumptions

$$p(w_1, \ldots, w_n) = \prod_{t=1}^{T} p(w_t | w_{t-1}, \ldots w_{t-n})$$

- n-gram counts estimated from large corpora
- Distributions smoothed to tolerate data sparsity, e.g., Laplace (add-one) smoothing, Kneser-Ney smoothing
- Evaluate on perplexity over held-out data

$$2 \frac{1}{N} \sum_{i=1}^{N} \log_2 p(w_1^{(i)} \ldots w_{T_{i}}^{(i)})$$

Discriminative language modeling
- Estimate n-gram probabilities with a discriminative model

$$p(w_t | w_{t-1}, \ldots w_1) \approx f(w_1, \ldots, w_t)$$
NNLM

Model $p(w_t|w_{t-1}, \ldots w_{t-n})$ with a feed-forward neural net
Model $p(w_t|w_{t-1}, \ldots w_{t-n})$ with an RNN

Or an ensemble of multiple RNNs, randomly initialized

<table>
<thead>
<tr>
<th>Model</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kneser-Ney 5-gram</td>
<td>141</td>
</tr>
<tr>
<td>Random forest [Xu 2005]</td>
<td>132</td>
</tr>
<tr>
<td>Structured LM [Filimonov 2009]</td>
<td>125</td>
</tr>
<tr>
<td>Feedforward NN LM</td>
<td>116</td>
</tr>
<tr>
<td>Syntactic NN LM [Emami 2004]</td>
<td>110</td>
</tr>
<tr>
<td>RNN trained by BP</td>
<td>113</td>
</tr>
<tr>
<td>RNN trained by BPTT</td>
<td>106</td>
</tr>
<tr>
<td>4x RNN trained by BPTT</td>
<td>98</td>
</tr>
</tbody>
</table>

Results on Penn Treebank corpus
Model $p(w_t|w_{t-1}, \ldots w_{t-n})$ with an RNN
Or an ensemble of multiple RNNs, randomly initialized

Comparison of single RNN vs RNN ensembles
Recent models with character-CNN inputs and softmax alternatives
Nearest neighbors in character-CNN embedding space

<table>
<thead>
<tr>
<th>Word</th>
<th>Top-1</th>
<th>Top-2</th>
<th>Top-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCERDIBLE</td>
<td>INCERDIBLE</td>
<td>NONEDIBLE</td>
<td>EXTENDIBLE</td>
</tr>
<tr>
<td>WWW.A.COM</td>
<td>WWW.AA.COM</td>
<td>WWW.AAA.COM</td>
<td>WWW.CA.COM</td>
</tr>
<tr>
<td>7546</td>
<td>7646</td>
<td>7534</td>
<td>8566</td>
</tr>
<tr>
<td>TOWNHALL1</td>
<td>TOWNHALL</td>
<td>DJc2</td>
<td>MOODSWING360</td>
</tr>
<tr>
<td>KOMARSKI</td>
<td>KOHARSKI</td>
<td>KONARSKI</td>
<td>KOMANSKI</td>
</tr>
</tbody>
</table>