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Introduction
FaceNet learns a mapping from face images to a compact 
Euclidean Space where distances directly correspond to a 
measure of face similarity. Once this is done, tasks such as face 
recognition, verification, and clustering are easy to do using 
standard techniques (using the FaceNet embeddings as features).

Uses a Deep CNN trained to optimize the embedding itself, rather 
than using the output of an intermediate bottleneck layer.

Training is done using triplets: one image of a face (‘anchor’), 
another image of that same face (‘positive exemplar’), and an 
image of a different face (‘negative exemplar’).

Main benefit is representational efficiency: can achieve 
state-of-the-art performance (record 99.63% accuracy on LFW, 
95.12% on Youtube Faces DB) using only 128-bytes per face.



Related Work - Facial Recognition
Previous face recognition approaches based on deep networks use a 
classification layer trained over a set of known face identities and then take an 
intermediate bottleneck layer as a representation used to generalize recognition 
beyond the set of identities used in training. Some of these then combine the 
output of a CNN with PCA for dimensionality reduction and SVM for classification.

Approaches such as those of Zhenyao et al [1] and the DeepFace group at 
Facebook [2] first “warp” or “align” faces into a more amenable form (either 
‘canonical frontal view’ or DeepFaces general 3D model) and then learn a CNN 
to classify each face as belonging to an identity.

The architectures explored using FaceNet are based on either the Zeiler&Fergus 
[3] model or Szegedy et al.’s Inception [4] model (which recently won the 
ImageNet competition in 2014).



Related Work - Triple Loss
The triplet-based loss function used to learn the mapping is an adaptation of 
Kilian Weinberger’s Large Margin Nearest Neighbor (LMNN) classifier [5] 
(which repeatedly pulls together images of the same person and 
simultaneously pushes images of any different person away) to deep neural 
networks.

Sun et al. [6] use ensembles of networks trained using a combination of classification and verification loss. 
The verification loss they use is similar to the triplet loss used to learn the mapping used by FaceNet in 
that it minimizes squared L2 distances between images of faces from the same person and enforces a 
margin separating images of faces from a different person, but it’s different in that only pairs of images are 
compared, whereas the triplet loss encourages a relative distance constraint by looking at three at a time. 

A loss similar to FaceNet’s triple loss was used by Wang et al. [7] for ranking images by semantic and 
visual similarity.



Method - Overview
Treating the CNN architecture as a blackbox, the most important part of FaceNet lies in the end-to-end 
learning of the system.

FaceNet looks for an embedding f(x) from an image into feature space ℝd, such that the squared L2 
distance between all face images (independent of imaging conditions) of the same identity is small, 
whereas the distance between a pair of face images from different identities is large.

Whereas previously used losses encourage all faces of the same identity onto a single point in ℝd, the 
triplet loss additionally tries to enforce a margin between each pair of faces from one person (anchor and 
positive) to all others’ faces. This margin enforces discriminability to other identities. 



Method - Triplet Loss

We want to ensure that an image xi
a of a specific person is closer to all other images xi

p of that same 
person than it is to any image xi

n of any other person by a margin ᶓ. That is,

Therefore, the loss (L) is:

Of all possible triplets (N of them), many would easily satisfy the above constraint. So it’d be a waste to 
look at these during training (wouldn’t contribute to adjusting parameters, would only slow down 
convergence); it’s therefore important to select “hard” triplets (which would contribute to improving the 
model) to use in training. How do we do that?

ᵙ = 0.2



Method - Triplet Selection
An idea: Given an anchor image xi

a, select the “hardest” positive image (of the same person) as xi
p (i.e. 

the one that’s furthest away in the dataset) and select the “hardest” negative image (of a different person) 
as xi

n (i.e. the one that’s closest in the dataset). If this triplet doesn’t violate condition, then none with that 
anchor will. (Think: if d- - d+ > ᵙ , then the condition is met.) 

Problem: Infeasible to compute these argmax and argmin across the whole dataset. Also this might lead 
to poor training (considering that mislabelled and poorly imaged faces would dominate the hard positives 
and negatives).

To avoid this: Generate triplets online. That is, select xi
p and xi

n (argmax and argmin) from a mini-batch 
(not from the entire dataset) for xi

a.

Batch details: They sample training data such that around 40 images are selected per identity for each 
mini-batch (to ensure a meaningful representation of the anchor-positive distances), and randomly sample 
negative faces for each mini-batch. Instead of picking the “hardest” positive for a given anchor, they used 
all the anchor-positive pairs within the batch while still selecting hard negatives (one to correspond to each 
anchor); they do this because they found this leads to a more stable and faster-converging solution.



Zeiler&Fergus-Inspired Architecture

● Consists of multiple interleaved layers of 
convolutions, non-linear activations, local response 
normalizations, and max pooling layers (with 
several additional 1x1xd convolutional layers 
throughout).

● 1x1 conv layer is inspired by the cross-channel 
parametric pooling.



Inception-Inspired Architecture



Datasets and Evaluation
The model is evaluated on 4 different datasets & these parameters are evaluated:

1. Hold-out Test Set: 1M images having the same distribution as the training set. Divided into 5 
subsets. VAL and FAR are calculated on 100k x 100k image pairs.

2. Personal Photos: 12k images with FAR and VAL calculated for 12k x 12k image pairs.
3. Labeled Faces in the Wild (LFW): de-facto academic test set for face recognition. FAR and VAL are 

not calculated.
4. Youtube Faces DB: setup is similar to LFW, but pairs of videos instead of images are used. FAR 

and VAL are not calculated.



Experiments - Computation vs. Accuracy Trade-off
● 100M - 200M images training face thumbnails, having 8M identities are used.
● Pre-processing: detecting faces and generating a tight bound box around each face. Resized 

depending on the input sizes of the networks varying from 96x96 to 224x224.
● There is tradeoff b/w accuracy vs FLOPS.
● The graph shows a strong correlation between 

FLOPS & accuracy achieved. 
● There isn’t a correlation b/w accuracy vs no. of 

parameters.
● NN2 achieves comparable performance to NN1 

with 20th of 
parameters but 
similar FLOPS.



Effect of CNN Model

VA
L

● Zeiler&Fergus [3] based architectures (NN1)
and GoogLeNet based Inception model [4]
(NN2) differ in number of parameters by 
a factor of 20. But they achieve 
comparable performance.

● NNS2, a tiny version of NN2, having input size 
of 140x116 model can be run on a mobile 
phone at 30ms / image and be good enough
for face recognition. VAL = 51.9%



Sensitivity to Image Quality
● Their models are robust to JPEG compression and perform well even at a JPEG quality of 20.

● Performance drop is very less with 120x120 input image size and remains acceptable even at 
80x80.



Embedding Dimensionality
● They experimented with a lot of dimensionalities and chose 128-D, as it was the best performing.
● It was expected that the larger dimensionalities would perform better, but it could also mean that 

they require more training. 
● During training a 128-D float vector is used which is quantized to 128-byte vector without loss of 

accuracy.
● Smaller embedding dimensions could be employed on mobile devices, with minor loss of accuracy.



Amount of Training Data
● Experiments were also conducted with number of training samples. 
● Smaller model with input size of 96x96 was employed for this analysis. It has 

same architecture as NN2 but without the 5x5 conv. in the inception module.

● Using only 10s of millions of images gives really good results, but with 100s of 
millions of images, the improvement starts to taper.



Performance on LFW
● The optimal threshold used for L2 distance calculation is 1.242.. 
● The input data is pre-processed in 2 ways: 

a. Fixed center crop of the LFW provided thumbnails.
b. Face detection using proprietary detector. If that does not align, then LFW alignment is used.

● The accuracy achieved with a is 98.87%, while with b is 99.63% (state-of-the-art)

False Accept False Reject



Performance on Youtube Faces DB
● Average similarity of all pairs of faces in the first 100 frames that are detected by their proprietary 

face detector, are used.
● Classification accuracy achieved is 95.12% (state-of-the-art).
● Using first 1000 frames, accuracy achieved is 95.18%, not an improvement.
● Previous efforts DeepId2+ (Sun et al.) had achieved 93.2%.



Face Clustering
The compact embeddings are 
used to cluster photos of people 
with the same identity, using 
agglomerative clustering.

Incredibly, it is invariant to 
occlusion, lighting, pose and 
even age.



Summary and Conclusions
Innovation: Triplet Loss adapted to deep neural networks, used to map images to 
low-dimensional space.

Value: 
1. state-of-the-art face recognition performance using only 128-bytes per face.
2. Minimal alignment required on the input dataset (tight crop around the face 

area), unlike DeepFace (FAIR) which performs 3D alignment.

Future Scope:
1. Understand the error cases and improve the model further. 
2. Reduce the model size and computational requirements.
3. Improve the long-training time by varying curriculum learning & mining offline.
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