
FaceNet
Florian Schroff, Dmitry Kalenichenko, James Philbin

Google Inc.

Presentation by Ignacio Aranguren and Rahul Rana

Introduction
FaceNet learns a mapping from face images to a compact
Euclidean Space where distances directly correspond to a
measure of face similarity. Once this is done, tasks such as face
recognition, verification, and clustering are easy to do using
standard techniques (using the FaceNet embeddings as features).

Uses a Deep CNN trained to optimize the embedding itself, rather
than using the output of an intermediate bottleneck layer.

Training is done using triplets: one image of a face (‘anchor’),
another image of that same face (‘positive exemplar’), and an
image of a different face (‘negative exemplar’).

Main benefit is representational efficiency: can achieve
state-of-the-art performance (record 99.63% accuracy on LFW,
95.12% on Youtube Faces DB) using only 128-bytes per face.

Related Work - Facial Recognition
Previous face recognition approaches based on deep networks use a
classification layer trained over a set of known face identities and then take an
intermediate bottleneck layer as a representation used to generalize recognition
beyond the set of identities used in training. Some of these then combine the
output of a CNN with PCA for dimensionality reduction and SVM for classification.

Approaches such as those of Zhenyao et al [1] and the DeepFace group at
Facebook [2] first “warp” or “align” faces into a more amenable form (either
‘canonical frontal view’ or DeepFaces general 3D model) and then learn a CNN
to classify each face as belonging to an identity.

The architectures explored using FaceNet are based on either the Zeiler&Fergus
[3] model or Szegedy et al.’s Inception [4] model (which recently won the
ImageNet competition in 2014).

Related Work - Triple Loss
The triplet-based loss function used to learn the mapping is an adaptation of
Kilian Weinberger’s Large Margin Nearest Neighbor (LMNN) classifier [5]
(which repeatedly pulls together images of the same person and
simultaneously pushes images of any different person away) to deep neural
networks.

Sun et al. [6] use ensembles of networks trained using a combination of classification and verification loss.
The verification loss they use is similar to the triplet loss used to learn the mapping used by FaceNet in
that it minimizes squared L2 distances between images of faces from the same person and enforces a
margin separating images of faces from a different person, but it’s different in that only pairs of images are
compared, whereas the triplet loss encourages a relative distance constraint by looking at three at a time.

A loss similar to FaceNet’s triple loss was used by Wang et al. [7] for ranking images by semantic and
visual similarity.

Method - Overview
Treating the CNN architecture as a blackbox, the most important part of FaceNet lies in the end-to-end
learning of the system.

FaceNet looks for an embedding f(x) from an image into feature space ℝd, such that the squared L2
distance between all face images (independent of imaging conditions) of the same identity is small,
whereas the distance between a pair of face images from different identities is large.

Whereas previously used losses encourage all faces of the same identity onto a single point in ℝd, the
triplet loss additionally tries to enforce a margin between each pair of faces from one person (anchor and
positive) to all others’ faces. This margin enforces discriminability to other identities.

Method - Triplet Loss

We want to ensure that an image xi
a of a specific person is closer to all other images xi

p of that same
person than it is to any image xi

n of any other person by a margin ᶓ. That is,

Therefore, the loss (L) is:

Of all possible triplets (N of them), many would easily satisfy the above constraint. So it’d be a waste to
look at these during training (wouldn’t contribute to adjusting parameters, would only slow down
convergence); it’s therefore important to select “hard” triplets (which would contribute to improving the
model) to use in training. How do we do that?

ᵙ = 0.2

Method - Triplet Selection
An idea: Given an anchor image xi

a, select the “hardest” positive image (of the same person) as xi
p (i.e.

the one that’s furthest away in the dataset) and select the “hardest” negative image (of a different person)
as xi

n (i.e. the one that’s closest in the dataset). If this triplet doesn’t violate condition, then none with that
anchor will. (Think: if d- - d+ > ᵙ , then the condition is met.)

Problem: Infeasible to compute these argmax and argmin across the whole dataset. Also this might lead
to poor training (considering that mislabelled and poorly imaged faces would dominate the hard positives
and negatives).

To avoid this: Generate triplets online. That is, select xi
p and xi

n (argmax and argmin) from a mini-batch
(not from the entire dataset) for xi

a.

Batch details: They sample training data such that around 40 images are selected per identity for each
mini-batch (to ensure a meaningful representation of the anchor-positive distances), and randomly sample
negative faces for each mini-batch. Instead of picking the “hardest” positive for a given anchor, they used
all the anchor-positive pairs within the batch while still selecting hard negatives (one to correspond to each
anchor); they do this because they found this leads to a more stable and faster-converging solution.

Zeiler&Fergus-Inspired Architecture

● Consists of multiple interleaved layers of
convolutions, non-linear activations, local response
normalizations, and max pooling layers (with
several additional 1x1xd convolutional layers
throughout).

● 1x1 conv layer is inspired by the cross-channel
parametric pooling.

Inception-Inspired Architecture

Datasets and Evaluation
The model is evaluated on 4 different datasets & these parameters are evaluated:

1. Hold-out Test Set: 1M images having the same distribution as the training set. Divided into 5
subsets. VAL and FAR are calculated on 100k x 100k image pairs.

2. Personal Photos: 12k images with FAR and VAL calculated for 12k x 12k image pairs.
3. Labeled Faces in the Wild (LFW): de-facto academic test set for face recognition. FAR and VAL are

not calculated.
4. Youtube Faces DB: setup is similar to LFW, but pairs of videos instead of images are used. FAR

and VAL are not calculated.

Experiments - Computation vs. Accuracy Trade-off
● 100M - 200M images training face thumbnails, having 8M identities are used.
● Pre-processing: detecting faces and generating a tight bound box around each face. Resized

depending on the input sizes of the networks varying from 96x96 to 224x224.
● There is tradeoff b/w accuracy vs FLOPS.
● The graph shows a strong correlation between

FLOPS & accuracy achieved.
● There isn’t a correlation b/w accuracy vs no. of

parameters.
● NN2 achieves comparable performance to NN1

with 20th of
parameters but
similar FLOPS.

Effect of CNN Model

VA
L

● Zeiler&Fergus [3] based architectures (NN1)
and GoogLeNet based Inception model [4]
(NN2) differ in number of parameters by
a factor of 20. But they achieve
comparable performance.

● NNS2, a tiny version of NN2, having input size
of 140x116 model can be run on a mobile
phone at 30ms / image and be good enough
for face recognition. VAL = 51.9%

Sensitivity to Image Quality
● Their models are robust to JPEG compression and perform well even at a JPEG quality of 20.

● Performance drop is very less with 120x120 input image size and remains acceptable even at
80x80.

Embedding Dimensionality
● They experimented with a lot of dimensionalities and chose 128-D, as it was the best performing.
● It was expected that the larger dimensionalities would perform better, but it could also mean that

they require more training.
● During training a 128-D float vector is used which is quantized to 128-byte vector without loss of

accuracy.
● Smaller embedding dimensions could be employed on mobile devices, with minor loss of accuracy.

Amount of Training Data
● Experiments were also conducted with number of training samples.
● Smaller model with input size of 96x96 was employed for this analysis. It has

same architecture as NN2 but without the 5x5 conv. in the inception module.

● Using only 10s of millions of images gives really good results, but with 100s of
millions of images, the improvement starts to taper.

Performance on LFW
● The optimal threshold used for L2 distance calculation is 1.242..
● The input data is pre-processed in 2 ways:

a. Fixed center crop of the LFW provided thumbnails.
b. Face detection using proprietary detector. If that does not align, then LFW alignment is used.

● The accuracy achieved with a is 98.87%, while with b is 99.63% (state-of-the-art)

False Accept False Reject

Performance on Youtube Faces DB
● Average similarity of all pairs of faces in the first 100 frames that are detected by their proprietary

face detector, are used.
● Classification accuracy achieved is 95.12% (state-of-the-art).
● Using first 1000 frames, accuracy achieved is 95.18%, not an improvement.
● Previous efforts DeepId2+ (Sun et al.) had achieved 93.2%.

Face Clustering
The compact embeddings are
used to cluster photos of people
with the same identity, using
agglomerative clustering.

Incredibly, it is invariant to
occlusion, lighting, pose and
even age.

Summary and Conclusions
Innovation: Triplet Loss adapted to deep neural networks, used to map images to
low-dimensional space.

Value:
1. state-of-the-art face recognition performance using only 128-bytes per face.
2. Minimal alignment required on the input dataset (tight crop around the face

area), unlike DeepFace (FAIR) which performs 3D alignment.

Future Scope:
1. Understand the error cases and improve the model further.
2. Reduce the model size and computational requirements.
3. Improve the long-training time by varying curriculum learning & mining offline.

Works Cited
[1] Z. Zhu, P. Luo, X. Wang, and X. Tang. Recover canonical- view faces in the wild with deep neural networks. CoRR, abs/1404.3543, 2014. 2

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In IEEE Conf. on
CVPR, 2014. 1, 2, 5, 8

[3] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013. 2, 4, 6

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014.2,4,5,6,9

[5] K.Q. Weinberger, J.Blitzer,and L.K.Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS. MIT Press, 2006. 2, 3

[6] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CoRR, abs/1412.1265, 2014. 1, 2, 5, 8

[7] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image similarity with deep ranking.
CoRR, abs/1404.4661, 2014. 2

