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Introduction

What are Generative models?

@ have a data set of training examples x; ~ pgata(x)
@ want to be able to generate new examples X ~ pg(x)
e want that pg & pyata

Example models

@ Hidden Markov models

Graphical models (directed/undirected)
Restricted Boltzmann Machines
Generative autoencoders
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Introduction

Why Generative models

@ useful or required for many tasks

e generating realistic audio from text (text to speach)
e machine translation

@ unsupervised learning

e can be used to learn features from raw data
e "What | cannot create | do not understand” Richard Feynman
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Introduction

Game theory

@ zero sum game with mixed strategy equilibrium
@ Minimax: nash equilibrium at saddle point

Your opponent
Rock  Paper Scissors

0 -1 I

Rock

u

Yo

Scissors Paper
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Introduction

Adversarial networks

@ Game between two players, mixed strategy equilibrium when
one learns to generate data

@ Generator tries to create fake samples that appear real

@ Descriminator tries to tell which are fake and which are real

D tries to
output 1

Differentiable
function G
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Methods

Definitions

@ Z some latent space

e X a data point (generated or real)
e Generator G(z): Z — X

@ Descriminator D(x) : X — {0, 1}

» Generated
”;' Generator Enerate
S G Data
g G(2)

Discriminator
D
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Methods

Loss functions

@ Minimax

min maxV (D, G) = Earpy (6108 D(@)] + B o) o (1 — D(G(2))]):

@ Discriminator

i3V (D, ) =|Earpenel108 D(@)] + Bxv ) [08(1 — DG

@ Generator

mg.x V(D,G) = Egpy () [log D(z)] +

E-p. (s)llog(1 — D(G(2)))] |

@ in practice learning for G may be bad with equation above so
maximize log(D(G(z)))
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Methods

Algorithms

@ the algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

© Sample minibatch of m noise samples {z(1), ..., (™} from noise prior py(2).
o Sample minibatch of m examples {&(),...,2(™} from data generating distribution
Paata(T)-

e Update the discriminator by ascending its stochastic gradient:

7

vgdi > [logD (z“)) +log (1 -D (G (z(i))))] .

m
i=1
end for

o Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior p,(z).
o Update the generator by descending its stochastic gradient:

Vo, 53108 (1-(6(29))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

@ https://www.youtube.com/watch?v=ClLzNj2MP3s
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Theorertical Results

Optimal value for the objective function

@ For a fixed G aim of discriminator D is to maximize V(G, D)

min max V(D, G) = Eavp, @y log D(@)] + Eznp, z) llog(1 — D(G(2)))]- 1

V(6,D) = [ pa(e) logD(@))da+ [ pa(2)log(1 - Dlg(a))ds

= [ Paa() log(D(x)) + py(x) log(l — D{x))dz (&)

o using argmax(alog(y) + blog(1 — y)) = 323, we get

* _ Piaral )
Da@) = () + py(z) @

@ Now the aim of G is to minimize C(G)
c(G) = max V(G,D)
=Eopy.[log DE()] + Eznp., [log(1 = D5 (G(2)))] “

=Fypy. [log D ()] + Eanp, [log(1 — Dg(x))]
Faua (@) + pg(m)] i |:l s P () + pg(:l:]]
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Theorertical Results

o ...
C(G) = max V(G,D)
=Egwpy..llog Dg ()] + Eznp. log(l — DE(G(2)))] “
=Eznp.[log DG ()] + Eangp, [log(l — Dg())]

—Euop [ P:d.au(z) po() ]

log——————— | +Epeyy, |log ————————
%8 Prual@) + pg(m)] ["" poa (@) + D ()

@ We can write this equation in terms of KL divergence between
normalized distributions

C(G) = —log(4) + KL (pdd

Pdata + P, ,
%) + KL (}U_g

| Pdata +Pg
puas 21 )

@ Which can also be written as the Jensen-Shannon divergence
between the model's distribution and the data generating process

C(G) = ~log(4) +2 - JSD (paua Ipy) ®
@ Thus, C* = —log(4) is the optimum value attained when
Pg = 8data
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Theorertical Results

Convergence of training algorithm

@ Proof

e Sub derivatives at optimal lie in sub derivatives of the overall
function
e So the training algorithm is equivalent to computing gradient

descent at optimal

Propeosition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Earpeia 108 DG ()] + Barp, [log(1 — Dg())]

then Dg converges 10 Ddata

Proof. Consider V(G, D) = U(p,, D) as a function of p, as done in the above criterion. Note
that U(pgy, D) is convex in p,. The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(z) =
Sup,e 4 fo(z) and fo(x) is convex in z for every , then 8 fz(z) € Of if B = argsup,c 4 fa(Z).
This is equivalent to computing a gradient descent update for p, at the optimal D given the cor-
responding G. supp, U(p,, D) is convex in p, with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of p,, p, converges to p, concluding the proof. O
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@ Not sure if...
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Theorertical Results

@ Intuition
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Theorertical Results

Experimental

o Log likelyhoods for MNIST and TFD

Model | MNIST | TFD
DBN [3] 138L2 | 190966
Stacked CAE [3] | 121 £1.6 | 2110 =50
Deep GSN[6] | 214+ 1.1 | 1890 %29
Adversarial nets | 225+2 | 2057 =26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different o chosen using the validation set of
each fold. On TFD, & was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

@ a syntetic measure, based on Parzen window estimates of Py,
@ need for robust measure for generative models in general
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Conclusions

Advantages

This model provides many advantages on deep graphical models and
their alternates:

@ inference becomes simple by avoiding Markov chains
@ Training becomes requires only backprop of gradients
@ Any differentiable function is theoretically permissible
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Conclusions

Disadvantages

Most important challenges include:

@ Synchronizing the discriminator with generator
e If G trains faster than D, it may collapse too many z to the
same value of x
o there is no explicit representation of pg(x)

e approximated with Parzen density estimation
12 1 1/z—z;)\?
Ple) =227 27rﬂ"‘xp(_§( h ))
e Comes quite close to Gaussian for large number of samples;
Plots for sample size = 1, 10, 100, 1000 !

2

T s

https://www.cs.utah.edu/~suyash /Dissertation_html /nodel1.html
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Conclusions

@ Generator collapses to the mean

o https://www.youtube.com/watch?v=mObnwR-u8pc
e https://www.youtube.com/watch?v=0r3g7-4bMYU
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Conclusions

Interesting experiments

@ Interpolation between hand written number 1 to 5

REARARARAEIEAEI R KAVARARARARAVAVAVAY,

Figure 3: Digits obtained by linearly interpolating between coordinates in = space of the full model.
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o Adding Glasses?

: ,
= - =
. ~J ===
&
man man woman :
with glasses without glasses without glasses woman with glasses

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y. The center
sample on the right hand side is produce by feeding ¥ as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y 1o produce the § other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

2Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
with deep convolutional generative adversarial networks. In: ICLR (2016)
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Conclusions

e Faces turn3

Figure 8: A "turn™ vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform
their pose.

3Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
with deep convolutional generative adversarial networks. In: ICLR (2016)
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