
Skip-Thought Vectors
Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,

Richard S. Zemel, Antonio Torralba, Raquel Urtasun,
Sanja Fidler

Student Presentation By Harish Shanker, Manu Gandham

Problem
Is there a task and a corresponding loss that will allow us to learn highly generic sentence
representations?

The team proposes a model for learning high quality sentence vectors without a particular
supervised task in mind

● Propose an objective function that abstracts the skip-gram model to sentence level
● Instead of using a word to predicts its surrounding text, encode a sentence to predict

the sentences around it

Previous Work
● There have been several approaches developed for learning composition operators that

map word vectors to sentence vectors
○ Recursive networks
○ Recurrent networks
○ Convolutional networks
○ Recursive convo network

● All produce sentence representations that are passed to a supervised task
○ Learn high quality sentence representations but are tuned ONLY for their

respective task
● Paragraph vector - learn unsupervised sentence representations by introducing a

distributed sentence indicator as part of a neural language model
○ Downside: inference needs to be performed to compute a new vector

Skip-Thought vectors
● Represented by an encoder-decoder model
● Encoder: Maps English sentence into a vector
● Decoder: Conditions on this vector to generate surrounding sentences
● Architecture: RNN encoder with GRU activations, RNN decoder with condition GRU
● Benefit: Skip-thoughts yield generic representation that perform robustly across all

tasks considered

Encoder
● Let wi

1 , . . . , wi
N be the words in sentence si where N is the number of words in the

sentence
● At each time step, the encoder produces a hidden state hi

t which can be interpreted as
the representation of the sequence wi

1 , . . . , wi
t

● The hidden state hi
N thus represents the full sentence

Decoder
● Introduce matrices Cz , Cr, and C that are used to bias the update gate, reset gate and

hidden state computation by the sentence vector
● Separate decoders for previous and next sentences (Si-1 and Si+1)
● Separate params for each decoder

Objective Function
● Given a tuple (si−1, si , si+1), the objective optimized is the sum of the log-probabilities for

the forward and backward sentences conditioned on the encoder representation:

● The total objective is the above summed over all such training tuples

Experiment Setup
● Using the learned encoder as a feature extractor, extract skip-thought vectors for all

sentences
● If the task involves computing scores between pairs of sentences, compute

component-wise features between pairs
● Train a linear classifier on top of the extracted features, with no additional fine-tuning or

backpropagation

Data
Book Corpus dataset

● Large collection of novels (free books written by unpublished authors)
● 16 different genres (Romance, Fantasy, Science Fiction, etc.)

Training Details
● 3 types of embeddings were created: uni-skip, bi-skip, and combine-skip
● Minibatch size: 128, Gradients are clipped if the norm of the vector exceeds 10, Adam

algorithm for optimization
● Trained on 20,000 word vocabulary from the Book Corpus database
● Expanded to 930,911 word vocabulary using vocab expansion and CBOW word vectors
● Since the goal is to evaluate skip-thoughts as a general feature extractor,

pre-processing is kept to a minimum
● When encoding new sentences, no additional preprocessing is done other than basic

tokenization - this is done to test the robustness of the skip-thought vectors

Vocabulary expansion
● Map the embedding space of the desired vocabulary to the input shape of the RNN

encoder
● To do this: solve for the matrix W which can be used to transform between vocabulary

spaces
● L2 linear regression problem

Experiment: Semantic Relatedness
● SICK dataset: Humans scored sentences on how similar they are
● Authors trained a logistic regression classifier to predict semantic relatedness for two

encoded skip-thought vectors
● Given two skip-thought vectors u and v, compute their component-wise product u · v

and their absolute difference |u − v| and concatenate them together

Experiment: Paraphrase Detection
● Task: 2 sentences are given and one must predict whether or not they are paraphrases

(using MSR Paraphrase Corpus)
● Skip-thought encoding + linear classifier works just as well as RNNs for some tasks,

unless the features are hand selected
● Observations:

○ Skip-thoughts alone outperform recursive nets with dynamic pooling when no
hand-crafted features are used

○ when other features are used, recursive nets with dynamic pooling works better
○ when skip-thoughts are combined with basic pairwise statistics, it becomes

competitive with the state-of-the-art which incorporate much more complicated
features and hand-engineering

Experiment: Image Sentence Ranking
● Best results for image sentence ranking achieved with RNNs
● Fisher vectors + linear CCA has been shown
● Images represented by features from OxfordNet

Classification Benchmarks
● Use 5 datasets: movie review sentiment (MR), customer product reviews (CR),

subjectivity/objectivity classification (SUBJ), opinion polarity (MPQA), and question-type
classification (TREC)

● Extracted skip-thought vectors and trained a logistic regression classifier on top
● Skip-thoughts performs about as well as the bag-of-words baselines
● However, fails to improve over methods whose sentence representations are learned

directly for the task at hand

Visualizing Skip-Thoughts
● Sentence pairs that are similar to each other are embedded next to other similar pairs
● Even without the use of relatedness labels, skip-thought vectors learn to accurately

capture this property

Novel Generation
● Perform generation by conditioning on a sentence, generating a new sentence,

concatenating the generated example to the previous text and continuing
● Model was trained on books, the generated samples is a nonsensical novel

Conclusion
● Skip-thought vectors perform well on MANY tasks, demonstrating the robustness of this

representation
● Experiments only scratch the surface, lot of variations for improvement:

○ Deep encoders and decoders
○ Larger context windows
○ Encoding and decoding paragraphs
○ Other encoders, such as convnets

