Google's Neural Machine Translation System

Bridging the Gap between Human and Machine Translation

Presented by Anthony Alvarez and GwonJae Cho

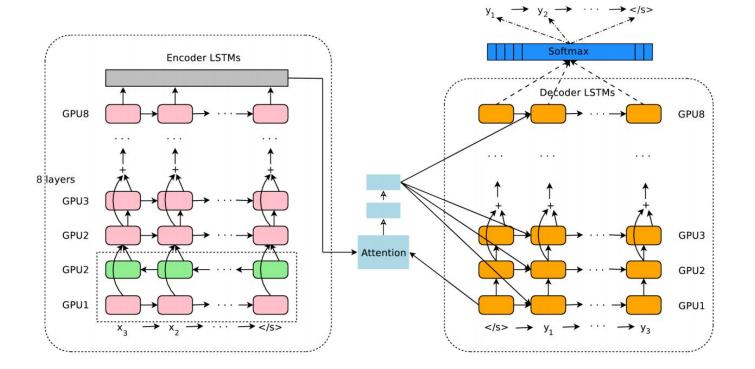
Introduction

- Neural Machine Translation
 - Ability to learn directly, end-to-end fashion
 - Consists of two recurrent neural networks and often accompanied by an attention mechanism
 - Worse in accuracy when training large-scale datasets
 - Slower training and inference speed
 - Ineffectiveness in dealing with rare words
 - Sentence coverage
- In Google's Neural Machine Translation,
 - Used LSTM RNN with residual connections between layers
 - Connected attention from the bottom layer of the decoder to the top layer of the encoder
 - Low precision arithmetic for inference
 - Used sub-word units

Related Work

- Prior to NMT, Statistical Machine Translation was dominant paradigm with some success
- Attention mechanism to deal with rare words, a character encoder, a character decoder, sentence level loss minimization
- However, systematic comparison with large scale, production quality phrase-based translation systems has been lacking.

Model Architecture



Model Architecture

$$\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_M} = EncoderRNN(x_1, x_2, x_3, \dots, x_M)$$
(1)

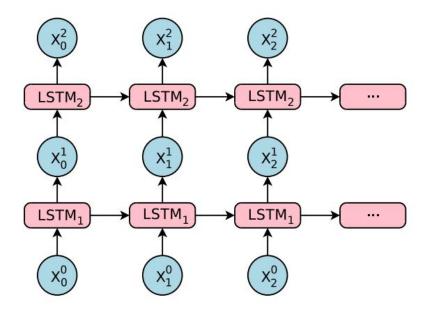
$$P(Y|X) = P(Y|\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$$

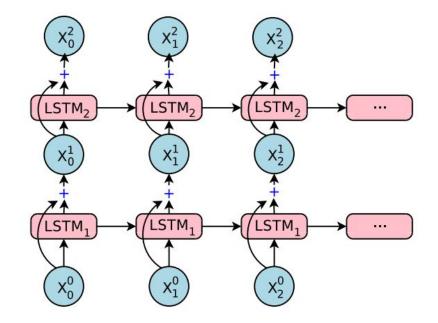
= $\prod_{i=1}^{N} P(y_i|y_0, y_1, y_2, ..., y_{i-1}; \mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$ (2)

- Decoder : RNN + softmax layer
- Attention

$$s_{t} = AttentionFunction(\mathbf{y}_{i-1}, \mathbf{x}_{t}) \quad \forall t, \quad 1 \le t \le M$$
$$p_{t} = \exp(s_{t}) / \sum_{t=1}^{M} \exp(s_{t}) \quad \forall t, \quad 1 \le t \le M$$
$$\mathbf{a}_{i} = \sum_{t=1}^{M} p_{t} \cdot \mathbf{x}_{t}$$

Residual Connections





Residual Connections

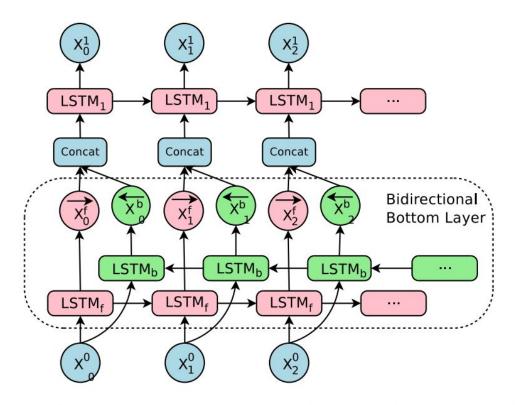
$$\begin{aligned} \mathbf{c}_{t}^{i}, \mathbf{m}_{t}^{i} &= \mathrm{LSTM}_{i}(\mathbf{c}_{t-1}^{i}, \mathbf{m}_{t-1}^{i}, \mathbf{x}_{t}^{i-1}; \mathbf{W}^{i}) \\ \mathbf{x}_{t}^{i} &= \mathbf{m}_{t}^{i} \\ \mathbf{c}_{t}^{i+1}, \mathbf{m}_{t}^{i+1} &= \mathrm{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_{t}^{i}; \mathbf{W}^{i+1}) \\ & & \downarrow \\ \mathbf{c}_{t}^{i}, \mathbf{m}_{t}^{i} &= \mathrm{LSTM}_{i}(\mathbf{c}_{t-1}^{i}, \mathbf{m}_{t-1}^{i}, \mathbf{x}_{t}^{i-1}; \mathbf{W}^{i}) \\ & \mathbf{x}_{t}^{i} &= \mathbf{m}_{t}^{i} + \mathbf{x}_{t}^{i-1} \\ \mathbf{c}_{t}^{i+1}, \mathbf{m}_{t}^{i+1} &= \mathrm{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_{t}^{i}; \mathbf{W}^{i+1}) \end{aligned}$$

Result : Improve the gradient flow

Bidirectional First layer

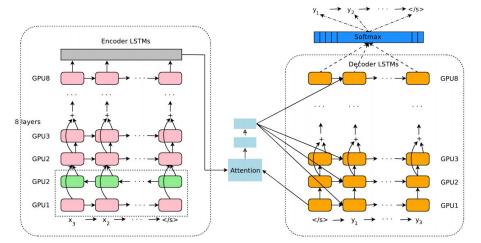
- The information required to translate certain words on the output side can appear anywhere on the source side.
- Depending on the language pair, the information for a particular output word can be distributed
- Bidirectional RNN for the encoder

Bidirectional First layer



Model Parallelism

- Data Parallelism
 - Train n model replicas concurrently using a Downpour SGD algorithm
 - n replicas all share one copy of model parameters
- Model Parallelism
 - The encoder and decoder networks are partitioned along the depth dimension and are placed on multiple GPUs



Segmentation Approaches

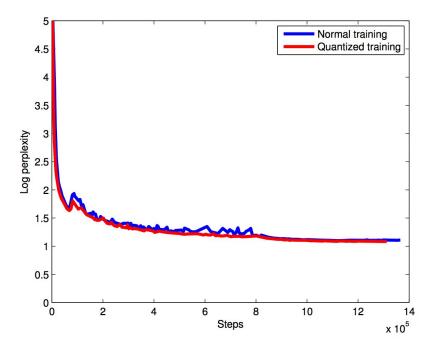
- Wordpiece(Sub-word Units)
 - 1. break words into wordpieces given a trained wordpiece model
 - 2. produces a wordpiece sequence, which is then converted into the corresponding word sequence.

Word: Jet makers feud over seat width with big orders at stake

wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

Quantizable Model and Quantized Inference

Speed up network by reducing accuracy



 $\mathbf{s}_i = \max(\operatorname{abs}(\mathbf{W}[i,:]))$ $\mathbf{WQ}[i,j] = \operatorname{round}(\mathbf{W}[i,j]/\mathbf{s}_i \times 127.0)$

	BLEU	Log Perplexity	Decoding time (s)
CPU	31.20	1.4553	1322
GPU	31.20	1.4553	3028
TPU	31.21	1.4626	384

Decoder

Few new features to speed decoding

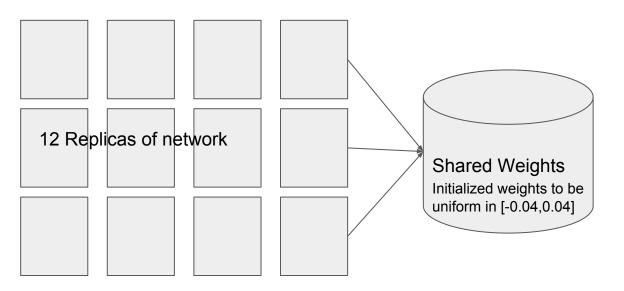
- Length normalization lp() helps avoid penalizing long sentences
- $p_{i,i}$ is the attention probability of the target word y_i on the source word x_i
- At each step only consider tokens that have local scores close to best token for that step
- Limit number of hypotheses to 8-12
- After each batch eliminate hypothesis more than 'beamsize' worse than best hypothesis

		α						
BLEU		0.0	0.2	0.4	0.6	0.8	1.0	
	0.0	30.3	30.7	30.9	31.1	31.2	31.1	
	0.2	31.4	31.4	31.4	31.3	30.8	30.3	
β	0.4	31.4	31.4	31.4	31.1	30.5	29.6	
	0.6	31.4	31.4	31.3	30.9	30.1	28.9	
	0.8	31.4	31.4	31.2	30.8	29.8	28.1	
	1.0	31.4	31.3	31.2	30.6	29.4	27.2	

$$s(Y,X) = \log(P(Y|X))/lp(Y) + cp(X;Y)$$

 $lp(Y) = rac{(5+|Y|)^{lpha}}{(5+1)^{lpha}}$
 $cp(X;Y) = eta * \sum_{i=1}^{|X|} \log(\min(\sum_{j=1}^{|Y|} p_{i,j}, 1.0)),$

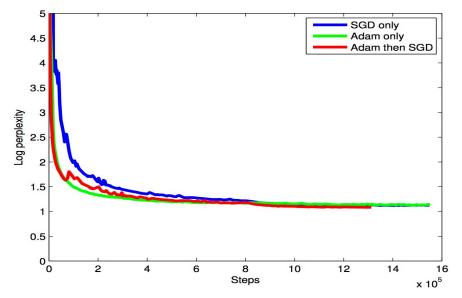
Training Procedure



All gradients are trimmed to be less than 5 Drop out in training prevents overfitting; Dropout set to between 0.2 and 0.3

Results after ML training

- Learning rate is set to be high for first 1.2 million steps then gradually brought down over next 800k steps
- Once ML alone has converged its is further optimized using reinforcement learning.
- On large Google proprietary datasets dropout is not used.



More ML and RL results

Table 4: Single model results on WMT $En \rightarrow Fr$ (newstest2014)

Model	BLEU	CPU decoding time
		per sentence (s)
Word	37.90	0.2226
Character	38.01	1.0530
WPM-8K	38.27	0.1919
WPM-16K	37.60	0.1874
WPM-32K	38.95	0.2118
Mixed Word/Character	38.39	0.2774
PBMT [15]	37.0	
LSTM (6 layers) [31]	31.5	
LSTM (6 layers $+$ PosUnk) [31]	33.1	
Deep-Att $[45]$	37.7	
Deep-Att + PosUnk [45]	39.2	

Table 6: Single model test BLEU scores, averaged over 8 runs, on WMT $En \rightarrow Fr$ and $En \rightarrow De$

Dataset	Trained with log-likelihood	Refined with RL
$En \rightarrow Fr$	38.95	39.92
En→De	24.67	24.60

Best models vs Human Evaluation

- Ensemble models using best networks show that RL improves BLEU
- Humans seem to be unable to distinguish ML and ML+RL methods
- Human data set was only 500 side by side examples so not definitive dataset.

	<u> </u>	<u>.</u>	v		
Model	BLEU		Model	BLEU	Side-by-side
WPM-32K (8 models)	40.35				averaged score
RL-refined WPM-32K (8 models)	41.16	~	PBMT [15]	37.0	3.87
LSTM (6 layers) [31]	35.6	NM	T before RL	40.35	4.46
LSTM (6 layers $+$ PosUnk) [31]	37.5	NI	MT after RL	41.16	4.44
Deep-Att + PosUnk (8 models) [45]	40.4	<u> </u>	Human		4.82

Improvement on Production Google Data

Table 10: Mean	of side-by	-side score	es on prod	uction data
	PBMT	GNMT	Human	Relative
				Improvement
$\mathbf{English} \to \mathbf{Spanish}$	4.885	5.428	5.504	87%
$\mathbf{English} \to \mathbf{French}$	4.932	5.295	5.496	64%
$\mathbf{English} \to \mathbf{Chinese}$	4.035	4.594	4.987	58%
$\text{Spanish} \rightarrow \text{English}$	4.872	5.187	5.372	63%
$\mathbf{French} \to \mathbf{English}$	5.046	5.343	5.404	83%
$\mathbf{Chinese} \to \mathbf{English}$	3.694	4.263	4.636	60%

Improvement on Production Google Data

