
Deep Speech 2
Presented by

Oscar & Siddharth

1

0) High level overview

2

What is Deep Speech 2
● End-to-End Deep learning based speech recognition system

● No need for hand engineered components

● Is able to handle noisy environments, different accents and languages

● By exploiting HPC, Deep Speech 2 is around 7x faster than Deep Speech 1,

up to 43% more accurate

● Possible to deploy the system in online setting

● Able to beat Humans on some benchmarks

3

Deep Speech 2 - Components
● Model Architectures

○ Combination of convolutional, recurrent and fully connected layers
○ Different number of recurrent layers ranging from 1-7

● Large Training Datasets
○ Around 11,940 hrs of English speech and 9,400 hrs of Mandarin
○ Augmenting Data using noise

● Computational Scale - Hardware, Optimizations using HPC techniques
○ Multiple (8-16) GPUs training single model in parallel using synchronous SGD
○ Custom implementation of CTC loss function, Memory allocator, All-reduce function
○ Training time cut down from weeks to days using above optimizations

4

1) Deep Learning Model

5

Overview of the Architecture

6

End-to-end Speech Recognition
● First method

○ Encoder RNN maps input to a fixed length vector
○ Decoder RMM expands the fixed length vector into a sequence of output predictions
○ Attention mechanism helps with long inputs or outputs
○ Works well with both phonemes or graphemes

● Second method (works better)
○ RNN with a CTC loss function
○ Works well with graphemes
○ Works well with phonemes if we have a lexicon
○ CTC-RNN network can be trained from scratch without the need of frame-wise alignments

from a GMM-HMM model for pre-training

● Both methods map variable length audio input to variable length output

7

Attention Mechanism

8

Connectionist Temporal Classification (CTC)

9

Recurrent BatchNorm

10

Sample-wise normalization Sequence-wise normalization

11

12

SortaGrad
● Longer examples are more challenging

○ Solution one: Truncating Backpropagation through time
○ Solution two: Curriculum learning

● SortaGrad is a curriculum learning strategy

13

14

Simple RNNs vs GRUs

15

Convolutions
● 1D: Time-only domain
● 2D: Time-and-frequency domain

16

17

Using Language Model
● With large networks like the ones used in this system, given enough training

data, the network learns an implicit language model.
● However since the labeled training data is still small compared to unlabeled

text corpora, the use of explicit LM improves WER

● Goal is to find y that maximizes Q(y). Here ᵙ and ᵚ are tunable parameters
found using development set.

● The optimal y is found using Beam Search

18

Effect of using Language Models

19

2) HPC Optimizations

20

System Optimizations
● System Hardware

○ Dense compute nodes with 8 Titan X GPUs per Node

● System Software
○ a deep learning library written in C++
○ high-performance linear algebra library written in both CUDA and C++

● Data parallelism
○ A minibatch of 512 is distributed across 8 GPUs such that each GPU processes 64 out of 512
○ One process per GPU
○ Gradient matrices exchanged during back propagation using inter process communication - all

reduce operation
○ Custom implementation of all reduce function - avoids copying between CPU & GPU

21

Dense Compute Node
● 2 intel CPUs, 8 Titan X GPUs, 384 GB of CPU memory and an 8 TB storage

volume

22

Effect of Data parallelism

23

Performance Gains (their all-reduce v/s OpenMPI’s)

24

GPU implementation of CTC loss function
● OpenMP parallel implementation of CTC on CPU was not scalable for two

reasons
○ It turned out to be computationally expensive for deeper RNNs
○ Transferring large activation matrices between CPUs and GPUs wasted lot of interconnect

bandwidth for CTC computation. This bandwidth could be used for other purposes like
exchanging gradient matrices for more data parallelism.

● To overcome this limitations, they implemented GPU version of CTC loss
function

25

Custom Memory Allocator
● cudaMalloc and std::malloc are optimized for situations in which multiple

applications are running on the system and sharing memory resources
● In this case, it is only the model that is running on the system, thus the default

allocators cause 2x slow down.
● To overcome this, they implement their own custom memory allocators for

both CPUs and GPUs.
● Also added fallback mechanism where if the GPU runs out of memory, GPU

will use CPU memory.
● In nutshell, custom allocator along with fall back mechanism makes their

system more robust

26

Training Data
● For English, Total of 11,940 hours of labeled speech data (around 8 million

utterances)
● For Mandarin, 9,400 hours of labeled speech data (around 11 million

utterances)
● Above data is pre-processed to convert it into short utterances by performing:

○ Alignment - align the audio and the transcript
○ Segmentation - segment long audio into 7 sec long utterances
○ Filtering - remove erroneous alignments using linear classification

● Training data also augmented by adding noise to 40% of utterances chosen
at random

27

Results - Amount of training data

40% decrease in WER for each 10x increase in training data

28

More Results - Model size
Increasing the size of layers keeping number of layers and other parameters fixed

29

More Results - Performance on Read speech

As we can see the system surpasses human performance on 3 out 4 datasets.

30

More Results - Performance on Accented speech

Results on a total of 4096 test examples with 1024 per group

31

More Results - Performance on Noisy Speech

32

Online Deployment - Batch Dispatch

33

● Challenges
○ Bidirectional RNNs require the entire utterance to be presented before transcribing can be

done
○ Serving individual requests is memory bandwidth bound as the system must load all the

weights of the network for each individual request
○ Serving individual requests limits the amount of parallelism that can be exploited in multi-core

systems

● With Batch Dispatch, there is a tradeoff between increased batch size and
better efficiency and increased latency.

● They use eager batching scheme - process each batch as soon as the
previous batch is processed.

● Eager batching scheme is best for end-user but not computationally most
efficient

Online Deployment - Latencies
As the system load increases, the batch size increases as per the Eager batching
scheme which helps to keep the latency low

On a held out set of 2000 utterances, their research system achieves 5.81 % CER whereas the deployed system achieves 6.1 % CER.
34

Final Online System
● Low deployment latency
● Reduced precision to 16-bit instead of 32-bit
● One row convolutional layer
● 5 Forward-only RNN layers with 2560 units per layer
● One fully-connected layer with 2560 hidden units
● Only 5% relative degradation over their research system

35

Questions ?

36

