Deep Speech 2

Presented by
Oscar & Siddharth

0) High level overview

What is Deep Speech 2

End-to-End Deep learning based speech recognition system

No need for hand engineered components

Is able to handle noisy environments, different accents and languages

By exploiting HPC, Deep Speech 2 is around 7x faster than Deep Speech 1,
up to 43% more accurate

Possible to deploy the system in online setting

Able to beat Humans on some benchmarks

Deep Speech 2 - Components

e Model Architectures
o Combination of convolutional, recurrent and fully connected layers
o Different number of recurrent layers ranging from 1-7
e [arge Training Datasets
o Around 11,940 hrs of English speech and 9,400 hrs of Mandarin
o Augmenting Data using noise
e Computational Scale - Hardware, Optimizations using HPC techniques

o Multiple (8-16) GPUs training single model in parallel using synchronous SGD
o Custom implementation of CTC loss function, Memory allocator, All-reduce function
o Training time cut down from weeks to days using above optimizations

1) Deep Learning Model

Overview of the Architecture

Batch
Normalization

(CTC)

feeeeeeeo)] .

Oxxrxxxxx
Xxxxxxxx
XxXxxxxxxo
Xxxxxxo
0000000
xxxxxxx

XXM
XX XXXXYXON

0000000

i00000000)}

[Spectrogram)

Fully
nnected

Recurrent
or
GRU
(Bidirectional)

1Dor 2D
Invariant
Convolution

End-to-end Speech Recognition

e First method
o Encoder RNN maps input to a fixed length vector
o Decoder RMM expands the fixed length vector into a sequence of output predictions

o Attention mechanism helps with long inputs or outputs
o Works well with both phonemes or graphemes
e Second method (works better)
o RNN with a CTC loss function
Works well with graphemes

O
o Works well with phonemes if we have a lexicon
o CTC-RNN network can be trained from scratch without the need of frame-wise alignments

from a GMM-HMM model for pre-training
e Both methods map variable length audio input to variable length output

Attention Mechanism

| l l l l l l

Encoder & |—— | ey —| @z |/ e3 |—=| s |—=| e |—| s

Decoder do — d: E— dz — da

Connectionist Temporal Classification (CTC)

: Waveform

[y

I I
ﬂ[ﬂ& | i A A 4 CTC

label pmhacljjility

Recurrent BatchNorm

In a typical feed-forward layer containing an affine transformation followed by a non-linearity f(-),
we insert a BatchNorm transformation by applying f(B(Wh)) instead of f(Wh + b), where

r — E|x]
B(x) =~ :
(#)=1 (V&I‘[J:] + E)UE

+ 8. (6)

- —
ni= fBW'RT+ TR).

= —
K= FBW'hHY + TR,

Sample-wise normalization Sequence-wise normalization

10

Architecture Hidden Units Train Dev

Baseline BatchNorm Baseline BatchNorm

1 RNN, 5 total 2400 10.55 11.99 13.55 14.40
3 RNN, 5 total 1880 .55 8.29 11.61 10.56
5 RNN, 7 total 1510 8.59 7.61 10.77 9.78
7 RNN, 9 total 1280 8.76 7.68 10.83 9.52

Table 1: Comparison of WER on a training and development set for various depths of RNN, with and without
BatchNorm. The number of parameters is kept constant as the depth increases, thus the number of hidden units
per layer decreases. All networks have 38 million parameters. The architecture “M RNN, N total” implies 1
layer of 1D convolution at the input, M consecutive bidirectional RNN layers, and the rest as fully-connected
layers with N total layers in the network.

11

Cost

G0

a0 |

5-1 BN

5-1 No BN
— 9-TBN
— 9-7T No BN

al) 100 150 200 25(0) 300
Iteration (< 10°)

12

SortaGrad

e Longer examples are more challenging
o Solution one: Truncating Backpropagation through time
o Solution two: Curriculum learning

e SortaGrad is a curriculum learning strategy

The CTC cost function that we use implicitly depends on the length of the utterance,

T
L(z,y;0) = —log Z Hpm(m:t;ﬁ'),

feAlign{z,y) t

13

Train Dev

Baseline BatchNorm Baseline BatchNorm

Not Sorted 10.71 8.04 11.96 9.78
Sorted 3.76 7.68 10.83 9.52

Table 2: Comparison of WER on a training and development set with and without SortaGrad, and with and
without batch normalization.

14

Simple RNNs vs GRUs

Architecture Simple RNN GRU
5 layers, 1 Recurrent 14.40 10.53
5 layers, 3 Recurrent 10.56 8.00
7 layers, 5 Recurrent 9.78 71.79
O layers, 7 Recurrent 9.52 8.19

Table 3: Comparison of development set WER for networks with either simple RNN or GRU, for various
depths. All models have batch normalization, one layer of 1D-invariant convolution, and approximately 38
million parameters.

15

Convolutions

e 1D: Time-only domain
e 2D: Time-and-frequency domain

Row conv layer GD @ @
Loy

Recurrent layer

A

L

Figure 3: Row convolution architecture with future context size of 2
16

Architecture Channels Filter dimension Stride Regular Dev Noisy Dev

1-layer 1D 1280 11 2 9.52 19.36
2-layer 1D 640, 640 3.5 b2 9.67 19.21
3-layer 1D 531251510 §5.5.5 1, 1y 2 9.20 20.22
1-layer 2D 32 41x11 2x2 3.94 16.22
2-layer 2D 32,32 41x11, 21x11 2x2, 2x1 9.06 15.71
3-layer 2D 32,32, 96 41x11..231%731; 21x11. 2x2,2%x1; 2x1 8.61 14.74

Table 4: Comparison of WER for various arrangements of convolutional layers. In all cases, the convolutions
are followed by 7 recurrent layers and 1 fully connected layer. For 2D-invariant convolutions the first dimen-
sion is frequency and the second dimension is time. All models have BatchNorm, SortaGrad, and 35 million
parameters.

17

Using Language Model

With large networks like the ones used in this system, given enough training
data, the network learns an implicit language model.

However since the labeled training data is still small compared to unlabeled
text corpora, the use of explicit LM improves WER

Q(y) = log(pec(y|)) + alog(pim(y)) + 8 word_count(y)

Goal is to find y that maximizes Q(y). Here a and p are tunable parameters
found using development set.
The optimal y is found using Beam Search

18

Effect of using Language Models

Language Architecture Dev no LM Dev LM

English 5-layer, 1 RNN 2779 14.39
English 9-layer, 7 RNN 14.93 9.52
Mandarin 5-layer, 1 RNN 9.80 7.13
Mandarin 9-layer, 7 RNN 1.95 5.81

Table 6: Comparison of WER for English and CER for Mandarin with and without a language model. These
are simple RNN models with only one layer of 1D invariant convolution.

19

2) HPC Optimizations

System Optimizations

e System Hardware

(@)

Dense compute nodes with 8 Titan X GPUs per Node

e System Software

(@)

(@)

a deep learning library written in C++
high-performance linear algebra library written in both CUDA and C++

e Data parallelism

(@)

(@)

@)

A minibatch of 512 is distributed across 8 GPUs such that each GPU processes 64 out of 512
One process per GPU

Gradient matrices exchanged during back propagation using inter process communication - all
reduce operation

Custom implementation of all reduce function - avoids copying between CPU & GPU

21

Dense Compute Node

2 intel CPUs, 8 Titan X GPUs, 384 GB of CPU memory and an 8 TB storage
volume

CPU H— CPU
PLX PLX | i | PLX PLX
GPU| |GPu||GPU| |GPU GPU| |GPU | |GPU | |GPU

Figure 8: Schematic of our training node where PLX indicates a PCI switch and the dotted box includes all
devices that are connected by the same PCI root complex.

22

Effect of Data parallelism

2].‘]

g18 [_ — 5-3 (2560)
k 9-7 (1760)

zJT
2][\'

Time (seconds)
B2

2“ 21 2? 2.’1 2-] 2'} -2Ei 7
GPUs

Figure 4: Scaling comparison of two networks—a 5 layer model with 3 recurrent layers containing 2560
hidden units in each layer and a 9 layer model with 7 recurrent layers containing 1760 hidden units in each
layer. The times shown are to train 1 epoch. The 5 layer model trains faster because it uses larger matrices and
is more computationally efficient.

Performance Gains (their all-reduce v/s OpenMPI’s)

GPU OpenMPI Our Performance
all-reduce all-reduce Gain
4 55359.1 2587.4 214
8 48881.6 2470.9 19.8
16 21562.6 1393.7 15.5
32 8191.8 1339.6 6.1
64 1395.2 611.0 2.3
128 1602.1 422.6 3.8

Table 7: Comparison of two different all-reduce implementations. All times are in seconds. Performance gain
1s the ratio of OpenMPI all-reduce time to our all-reduce time.

24

GPU implementation of CTC loss function

e OpenMP parallel implementation of CTC on CPU was not scalable for two

reasons
o Itturned out to be computationally expensive for deeper RNNs
o Transferring large activation matrices between CPUs and GPUs wasted lot of interconnect
bandwidth for CTC computation. This bandwidth could be used for other purposes like
exchanging gradient matrices for more data parallelism.

e To overcome this limitations, they implemented GPU version of CTC loss

function
Language Architecture CPU CTC Time GPU CTC Time Speedup
English 5-layer, 3 RNN 5888.12 203.56 28.9
Mandarin 5-layer, 3 RNN 1688.01 135.05 12.5

Table 8: Comparison of time spent in seconds in computing the CTC loss function and gradient in one epoch
for two different implementations. Speedup 1s the ratio of CPU CTC time to GPU CTC time. °

Custom Memory Allocator

cudaMalloc and std::malloc are optimized for situations in which multiple
applications are running on the system and sharing memory resources

In this case, it is only the model that is running on the system, thus the default
allocators cause 2x slow down.

To overcome this, they implement their own custom memory allocators for
both CPUs and GPUs.

Also added fallback mechanism where if the GPU runs out of memory, GPU
will use CPU memory.

In nutshell, custom allocator along with fall back mechanism makes their
system more robust

26

Training Data

For English, Total of 11,940 hours of labeled speech data (around 8 million
utterances)

For Mandarin, 9,400 hours of labeled speech data (around 11 million
utterances)

Above data is pre-processed to convert it into short utterances by performing:

o Alignment - align the audio and the transcript
o Segmentation - segment long audio into 7 sec long utterances
o Filtering - remove erroneous alignments using linear classification

Training data also augmented by adding noise to 40% of utterances chosen
at random

27

Results - Amount of training data

Fraction of Data Hours Regular Dev Noisy Dev

1% 120 29.23 50.97
10% 1200 13.80 22.99
20% 2400 11.65 20.41
50% 6000 9.51 15.90

100% 12000 8.46 13.59

Table 10: Comparison of English WER for Regular and Noisy development sets on increasing training dataset
size. The architecture is a 9-layer model with 2 layers of 2D-invariant convolution and 7 recurrent layers with
68M parameters.

40% decrease in WER for each 10x increase in training data

28

More Results - Model size

Increasing the size of layers keeping number of layers and other parameters fixed

Model size Model type Regular Dev Noisy Dev

18 x 109 GRU 10.59 21.38
38 x 108 GRU 9.06 17.07
70 x 108 GRU 8.54 15.98
70 x 108 RNN 8.44 15.09
100 x 109 GRU 7.78 14.17
100 x 108 RNN 7.73 13.06

Table 11: Comparing the effect of model size on the WER of the English speech system on both the regular and
noisy development sets. We vary the number of hidden units in all but the convolutional layers. The GRU model
has 3 layers of bidirectional GRUs with 1 layer of 2D-invariant convolution. The RNN model has 7 layers of
bidirectional simple recurrence with 3 layers of 2D-invariant convolution. Both models output bigrams with a
temporal stride of 3. All models contain approximately 35 million parameters and are trained with BatchNorm
and SortaGrad.

More Results - Performance on Read speech

Read Speech

Test set DS1 DS2 Human
WSJ eval’92 4.94 3.60 5.03
WSJ eval’93 6.94 4.98 8.08

LibriSpeech test-clean 7.89 5.33 5.83
LibriSpeech test-other 21.74 13.25 12.69

Table 13: Comparison of WER for two speech systems and human level performance on read speech.

As we can see the system surpasses human performance on 3 out 4 datasets.

30

More Results - Performance on Accented speech

Accented Speech

Test set DS1 DS2 Human
VoxForge American-Canadian 15.01 755 4.85
VoxForge Commonwealth 2846 13.56 8.15
VoxForge European 3120 1755 12.76
VoxForge Indian 45.35 22.44 2215

Table 14: Comparing WER of the DS1 system to the DS2 system on accented speech.

Results on a total of 4096 test examples with 1024 per group

31

More Results - Performance on Noisy Speech

Noisy Speech
Test set DSI1 DS2 Human

CHiIME eval clean 6.30 3.34 3.46
CHiME eval real 67.94 21.79 11.84
CHiME eval sim 80.27 45.05 31.33

Table 15: Comparison of DS1 and DS2 system on noisy speech. “CHIME eval clean™ is a noise-free baseline.
The “CHiME eval real” dataset 1s collected in real noisy environments and the “CHiME eval sim” dataset has

similar noise synthetically added to clean speech. Note that we use only one of the six channels to test each
utterance.

32

Online Deployment - Batch Dispatch

Challenges
o Bidirectional RNNs require the entire utterance to be presented before transcribing can be
done

o Serving individual requests is memory bandwidth bound as the system must load all the
weights of the network for each individual request

o Serving individual requests limits the amount of parallelism that can be exploited in multi-core
systems

With Batch Dispatch, there is a tradeoff between increased batch size and
better efficiency and increased latency.

They use eager batching scheme - process each batch as soon as the
previous batch is processed.

Eager batching scheme is best for end-user but not computationally most
efficient

33

Online Deployment - Latencies

As the system load increases, the batch size increases as per the Eager batching
scheme which helps to keep the latency low

B 50%ile
0.4 [10 streams 100 [{CZ=3 98%ile
B 20 streams -
Wl
503 [30 streams E
= =
< g
-‘lé 0.2 ,E 30 — — —
a —
0
0 10 20 30 40

Number of concurrent streams

Batch size

Higure o3z Erobability: that orequent: s:peocessed s barehoot giveusine Figure 6: Median and 98 percentile latencies as a function of server load

On a held out set of 2000 utterances, their research system achieves 5.81 % CER whereas the deployed system achieves 6.1 % CER.

34

Final Online System

Low deployment latency

Reduced precision to 16-bit instead of 32-bit

One row convolutional layer

5 Forward-only RNN layers with 2560 units per layer
One fully-connected layer with 2560 hidden units

Only 5% relative degradation over their research system

35

Questions ?

I Hnw to Be Good at Fist Fighting

36

