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FastText
FastText is on par with state-of-the-art deep learning classifiers in terms of accuracy

But it is way faster:

● FastText can train on more than one billion words in less than ten minutes using a 
standard multicore CPU

● Classify nearly 500K sentences among 312K classes in less than a minute



Continuous Bag of Words (CBOW)
Uses a window in both directions of the target word

Word order within the window is ignored

Shared weight matrix between input and projection 
layer for all word positions

Projection Layer + Softmax Layer



Continuous Bag of N-grams
Uses a window in both directions of the 

target n-gram

Word order within each n-gram is preserved

Order of n-grams in window is not preserved



Skipped N-grams
In skipped N-grams, you try to predict the 
surrounding context words conditioned on 
the current word.

More formally, given a sequence of training 
words w1, w2, w3, ….wT skipped n-gram 
model tries to maximize the average log 
probability



Continuous Bag of Words:

Several times faster to train than the skip-gram 

Slightly better accuracy for the more frequent words

Complexity: Q = N X D + D X log2(V)

Skipped N-grams:

Works well with small amount of the training data

Represents well even rare words or phrases.

Performance increases with context size, but cost too

Complexity: Q = N X (D + D X log2(V))

Comparison of CBOW and Skipped N-Grams



Hashing Trick
From ‘Strategies for Training Large Scale Neural Network Models’ by Mikolov et al.

Represent the data in hash table format as shown on Wiki (n-gram of n=1)

Use hashing trick to map sparse matrix to one dimensional array

The size of the hash table and how is it stored - N X V (N  = Number of Documents, V = 
Size of the vocabulary)

Example:

1. John likes to watch movies.

2. Mary likes movies too.

3. John also likes football.



Hierarchical Softmax
First proposed by Morin and Bengio in Hierarchical Probabilistic Neural Network 
Language Model

Inspired by the binary tree. 

Log2(N) instead of N



Neural Network Linear Model Model Architecture



Complexity of Neural Network Linear Model (NNLM)
Complexity: Q = N X D + N X D X H  + H X V

● N: The number of previous words used for context

● D: Number of dimensions of the projection matrix

● H: Number of hidden units in the hidden layer

● V: Size of the vocabulary

H X V is the dominating term.

Using Hierarchical Softmax, we can get it down to H X log2V



Recurrent Neural Net 
Language Model
Complexity: Q = H X H + H X V

Dominating term = H X V

RNNs don’t have a projection layer, only input, 
hidden and output layer



FastText Architecture

Complexity: Q = N X D + D X log2(V) + H X D



For a set of N documents, the model minimizes the negative log likelihood over the classes.

Optimization was performed using stochastic gradient descent and a linearly decaying 
learning rate. 

Fast Text Architecture (cont.)

Xn is normalized bag of words of the nth document

Yn the label, A, B weight matrices



Task Description: Sentiment Analysis



Sentiment Analysis: Performance



Sentiment Analysis: Speed



Task: Tag Prediction

Predicting tags according to the titles and caption for the Yahoo Flickr Creative 
Commons 100 Million dataset which contains 100 M of images with titles, caption 
and tags.  http://yfcc100m.appspot.com/





Tag Prediction Task
FastText was evaluated for scalability on the tag prediction of 100 M images with 
captions, titles and tags.

Remove sparse words and tags occurring < 100 times.

Train Set: 91,188,648 examples (1.5B tokens). 

Validation Set: 930,497 

Test Set: 543,424 

Vocabulary Size: 297,141 

Tag Size: 312,116 



TagSpace Network - The competing network



Training methodology for Tag Prediction
FastText is run for 5 epochs and compared to TagSpace for:

50 Hidden Units

200 Hidden Units

Similar results between two networks for the small hidden layer

Bigrams (n=2, n-grams) significantly improved performance

Test Phase: Speedup of 600X 



Comparison with Tagspace




