
LSTM: A Search Space Odyssey

By: Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R.

Steunebrink, Jürgen Schmidhuber

Presented By: Anshul Sacheti, YangLu Piao

Abstract
● In this paper, the authors analyze performance of eight LSTM variants on three

representative tasks: speech recognition, handwriting recognition and polyphonic

music modeling.

● Hyperparameters for each variant were optimized individually using random

search and importance was gauged using fANOVA (an efficient approach for

assessing hyperparameter importance)

Long Short-Term Memory (LSTM)

Hereby

referred

to as

vanilla

LSTM

Vanilla LSTM
● 3 Gates: Input, forget, output

● Block input

● Single Cell (Constant Error Carousel)

● Output activation function

● Peephole connections

● Output recurrently connected back to block input and all gates

Vanilla LSTM Math

x

t

 is the input at time t, W = input weight matrices, R = square

recurrent weight matrices, p = peephole weight vectors, b = bias

vectors

LSTM History
● Initial Version

○ (possibly multiple) cells, input/output gates, no forget gates or peephole

connections, training with Real Time Recurrent Learning (RTRL) /

Backpropagation Through Time (BPTT),

○ Only gradient for cell was propagated back, other gradients truncated

○ Full gate recurrence - all gates received recurrent inputs from all gates at the

previous time-step in addition to the recurrent inputs from the block outputs

LSTM Modifications
● Forget Gate (Gers et al., 1999) to reset a block’s own state

● Peephole Connections (Gers & Schmidhuber, 2000) added to connect the cell to

the gates

● Full Gradient (Graves & Schmidhuber, 2005) proposed via BPTT algorithm

● Gated Recurrent Unit (GRU) (Cho et al., 2014) simplification of LSTM with no

peepholes, output activation functions, and coupled input and forget gate. Output

gate only gates recurrent connections to block input

The Variants and Datasets
Eight LSTM variants (each a single change to vanilla LSTM):

● No Input Gate (NIG); No Forget Gate (NFG) ; No Output Gate (NOG); No

Input Activation Function (NIAF); No Output Activation Function (NOAF); No

Peepholes (NP); Coupled Input and Forget Gate (CIFG); Full Gate Recurrence

(FGR)

Datasets:

● TIMIT (speech corpus), IAM Online (handwriting db) , JSB Chorales

(polyphonic music modeling dataset)

TIMIT Speech Corpus (Garofolo et al., 1993)
● Frame-wise classification task such that each audio-frame is classified against 61

phones

● Performance = classification error percentage

● Training = 3696 sequences, Testing = 400 sequences, Validation = 192 sequences,

each with 304 frames on average

IAM Online Handwriting Database (Liwicki & Bunke, 2005)
● English sentences as time series of pen movements that are mapped to characters.

4 input features: change in x/y pen positions, time since current stroke started,

and binary indicating whether the pen is lifted

● Performance = Character Error Rate (CER)

● Training = 5355 sequences, Testing = 2956 sequences, Validation = 3859

sequences, each with 334 frames on average

JSB Chorales (Allan & Williams, 2005)
● Polyphonic music modeling dataset. Consists of sequences of binary vectors and

the task is next-step prediction

● Performance = Negative Log Likelihood on validation/test set

● Training = 229 sequences, Testing = 76 sequences, Validation = 77 sequences, each

with 61 frames on average

Evaluation Setup
● Goals: Compare different LSTM variants and not to achieve state-of-art results.

Keep setup simple and comparisons fair. Performance+impact of hyperparameters

● Vanilla LSTM is used as a baseline.

● LSTM variants: NIG, NFG, NOG, NIAF, NOAF, NP, CIFG, FGR

● Datasets: TIMIT, IAM, JSB

Network Architectures
● Bidirectional LSTM which consists of two hidden layers, forward layer and

backward layer, was used for TIMIT and IAM Online task; normal unidirectional

LSTM with one hidden layer and a sigmoid output layer was used for JSB

Chorales taks.

● As loss function, they employed Cross-Entropy Error for TIMIT and JSB

Chorales, while for the IAM Online taks the Connectionist Temporal

Classification(CTC) Error was used.

● The initial weights were drawn from a normal distribution with standard

deviation of 0.1.

Training
● Training was done using SGD with Nesterov-style momentum.

● The learning rate was rescaled by a factor of [1-momentum].

● Gradients were computed using full BPTT(BackPropagation Through Time) for

LSTMs.

● Training stopped after 150 epochs or once there was no improvement on the

validation set for more than 15 epochs.

*Momentum vs. Nesterov momentum
Momentum:

Nesterov Momentum:

*Momentum vs. Nesterov momentum
Momentum:

Nesterov Momentum:

Implementation of LSTM variants
Baseline(Vanilla):

NIG: i = 1.0 NFG: f = 1.0 NOG: o = 1.0 NIAF: no g for z

NOAF: h(c)->c NP: no tf.multiply(c_prev,*) and tf.multiply(c,*)

CIFG: f = 1-i FGR:

Implementation of LSTM variants
Baseline(Vanilla):

NIG: i = 1.0 NFG: f = 1.0 NOG: o = 1.0 NIAF: no g for z

NOAF: h(c)->c NP: no tf.multiply(c_prev,*) and tf.multiply(c,*)

CIFG: f = 1-i FGR:

Hyperparameter Search
● Number of LSTM blocks per hidden layer: log-uniform samples from [20, 200]

● Learning rate: log-uniform samples from [10^-6, 10^-2]

● Momentum: 1 - log-uniform samples from [0.01, 1.0]

● Standard deviation of Gaussian input noise: uniform samples from [0, 1]

● In the case of the TIMIT dataset, two additional hyperparameter(booleans) were

considered: choice between traditional momentum and Nesterov-style

momentum; whether to clip the gradients to the range [-1, 1]. The second one

turned out to hurt overall performance.

Observations
● Each of the 5400 experiments was run on one of 128 AMD Opteron CPUs at 2.5

GHz and took 24.3 h on average to complete.

● For TIMIT and JSB: 29.6% classification error(CIFG) and log-likelihood of

-8.38(NIG) respectively.

● For IAM: Character Error Rate of 9.26%(NP).

Observations-performance

Observations-performance
1 . NOAF and NFG significantly hurt performance on all three datasets, which shows

that the ability to forget old information and the squashing of the cell state appear to

be critical for the LSTMs.

2. CIFG and NP did not lead to significant changes to the performance, but they

simplify LSTMs and reduce the computational complexity, so it might be worthwhile

to incorporate these changes into the architecture.

3. FGR greatly increased the number of parameter but did not significantly improve

performance and even make it worse, so don’t use it.

Observations-performance
4. NIG, NOG and NIAF had no significant effect on music modeling performance. We

can hypothesize that these behaviors will generalize to similar problems such as

language modeling.

Observations-impact of hyperparameters
Higher order: The percentage of variance that is due to interactions between multiple

parameters. (TIMIT)

Observations-impact of hyperparameters

Observations-impact of hyperparameters
1. Learning rate is by far the most important hyperparameter. The next is the hidden

layer size, followed by the input noise.

2. Higher order interactions play an important role in the case of TIMIT.

3. While searching for a good learning rate for the LSTM, it is sufficient to do a coarse

search by starting with a high value (e.g. 1.0) and dividing it by ten until performance

stops increasing.

4. TIMIT:

Observations-Impact of hyperparameters

Observations-impact of hyperparameters
5. Larger network (bigger hidden layer size) perform better, and the required training

time increases with the network size.

6. Adding Gaussian noise on the inputs almost always hurts performance and slightly

increase training times. The only exception is TIMIT.

7. Momentum affects neither performances nor training time.

Conclusion
1. The most commonly used LSTM architecture(vanilla LSTM) performs reasonably

well on various datasets and using any 8 possible modifications does not significantly

improve the LSTM performance.

2. Certain modifications such as coupling the input and forget gates or removing

peephole connections simplify LSTM without significantly hurting performance.

3. The forget gate and the output activation function are the critical components of the

LSTM block.

Conclusion
4. Learning rate and network size are the most crucial tunable LSTM hyperparameters.

The use of momentum was found to be unimportant. Gaussian noise on the inputs was

found to be moderately helpful for TIMIT, but harmful for other datasets.

5. The analysis of hyperparameter interactions revealed that even the highest measured

interaction (between learning rate and network size) is quite small. This implies that

the hyperparameters can be tuned independently. In particular, the learning rate can

be calibrated first using a fairly small network, thus saving a lot of experimentation

time.

Thank you!

