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Abstract
● In this paper, the authors analyze performance of eight LSTM variants on three 

representative tasks: speech recognition, handwriting recognition and polyphonic 

music modeling. 

● Hyperparameters for each variant were optimized individually using random 

search and importance was gauged using fANOVA (an efficient approach for 

assessing hyperparameter importance)



Long Short-Term Memory (LSTM)

Hereby 

referred 

to as 

vanilla 

LSTM



Vanilla LSTM
● 3 Gates: Input, forget, output

● Block input

● Single Cell (Constant Error Carousel)

● Output activation function

● Peephole connections

● Output recurrently connected back to block input and all gates



Vanilla LSTM Math

x

t

 is the input at time t, W = input weight matrices, R = square 

recurrent weight matrices, p = peephole weight vectors, b = bias 

vectors



LSTM History
● Initial Version 

○ (possibly multiple) cells, input/output gates, no forget gates or peephole 

connections, training with Real Time Recurrent Learning (RTRL) / 

Backpropagation Through Time (BPTT), 

○ Only gradient for cell was propagated back, other gradients truncated

○ Full gate recurrence - all gates received recurrent inputs from all gates at the 

previous time-step in addition to the recurrent inputs from the block outputs 



LSTM Modifications
● Forget Gate (Gers et al., 1999) to reset a block’s own state

● Peephole Connections (Gers & Schmidhuber, 2000) added to connect the cell to 

the gates

● Full Gradient (Graves & Schmidhuber, 2005) proposed via BPTT algorithm 

● Gated Recurrent Unit (GRU) (Cho et al., 2014) simplification of LSTM with no 

peepholes, output activation functions, and coupled input and forget gate. Output 

gate only gates recurrent connections to block input



The Variants and Datasets
Eight LSTM variants (each a single change to vanilla LSTM): 

● No Input Gate (NIG); No Forget Gate (NFG) ; No Output Gate (NOG); No 

Input Activation Function (NIAF); No Output Activation Function (NOAF); No 

Peepholes (NP); Coupled Input and Forget Gate (CIFG); Full Gate Recurrence 

(FGR)

Datasets:

● TIMIT (speech corpus), IAM Online (handwriting db) , JSB Chorales 

(polyphonic music modeling dataset)



TIMIT Speech Corpus (Garofolo et al., 1993) 
● Frame-wise classification task such that each audio-frame is classified against 61 

phones

● Performance = classification error percentage

● Training = 3696 sequences, Testing = 400 sequences, Validation = 192 sequences, 

each with 304 frames on average



IAM Online Handwriting Database (Liwicki & Bunke, 2005)
● English sentences as time series of pen movements that are mapped to characters. 

4 input features: change in x/y pen positions, time since current stroke started, 

and binary indicating whether the pen is lifted

● Performance = Character Error Rate (CER)

● Training = 5355 sequences, Testing = 2956 sequences, Validation = 3859 

sequences, each with 334 frames on average



JSB Chorales (Allan & Williams, 2005)
● Polyphonic music modeling dataset. Consists of sequences of binary vectors and 

the task is next-step prediction

● Performance = Negative Log Likelihood on validation/test set

● Training = 229 sequences, Testing = 76 sequences, Validation = 77 sequences, each 

with 61 frames on average



Evaluation Setup
● Goals: Compare different LSTM variants and not to achieve state-of-art results. 

Keep setup simple and comparisons fair. Performance+impact of hyperparameters

● Vanilla LSTM is used as a baseline.

● LSTM variants: NIG, NFG, NOG, NIAF, NOAF, NP, CIFG, FGR

● Datasets: TIMIT, IAM, JSB



Network Architectures 
● Bidirectional LSTM which consists of two hidden layers, forward layer and 

backward layer, was used for TIMIT and IAM Online task; normal unidirectional 

LSTM with one hidden layer and a sigmoid output layer was used for JSB 

Chorales taks. 

● As loss function, they employed Cross-Entropy Error for TIMIT and JSB 

Chorales, while for the IAM Online taks the Connectionist Temporal 

Classification(CTC) Error was used. 

● The initial weights were drawn from a normal distribution with standard 

deviation of 0.1.



Training
● Training was done using SGD with Nesterov-style momentum. 

● The learning rate was rescaled by a factor of  [1-momentum].

● Gradients were computed using full BPTT(BackPropagation Through Time) for 

LSTMs.

● Training stopped after 150 epochs or once there was no improvement on the 

validation set for more than 15 epochs.



*Momentum vs. Nesterov momentum
Momentum: 

Nesterov Momentum:



*Momentum vs. Nesterov momentum
Momentum: 

Nesterov Momentum:



Implementation of LSTM variants
Baseline(Vanilla): 

NIG: i = 1.0 NFG: f = 1.0 NOG: o = 1.0 NIAF: no g for z

NOAF: h(c)->c NP: no tf.multiply(c_prev,*) and tf.multiply(c,*)

CIFG: f = 1-i FGR: 
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Hyperparameter Search
● Number of LSTM blocks per hidden layer: log-uniform samples from [20, 200]

● Learning rate: log-uniform samples from [10^-6, 10^-2]

● Momentum: 1 - log-uniform samples from [0.01, 1.0]

● Standard deviation of Gaussian input noise: uniform samples from [0, 1]

● In the case of the TIMIT dataset, two additional hyperparameter(booleans) were 

considered: choice between traditional momentum and Nesterov-style 

momentum; whether to clip the gradients to the range [-1, 1]. The second one 

turned out to hurt overall performance. 



Observations
● Each of the 5400 experiments was run on one of 128 AMD Opteron CPUs at 2.5 

GHz and took 24.3 h on average to complete. 

● For TIMIT and JSB: 29.6% classification error(CIFG) and log-likelihood of 

-8.38(NIG) respectively.

● For IAM: Character Error Rate of 9.26%(NP).



Observations-performance



Observations-performance
1 . NOAF and NFG significantly hurt performance on all three datasets, which shows 

that the ability to forget old information and the squashing of the cell state appear to 

be critical for the LSTMs. 

2. CIFG and NP did not lead to significant changes to the performance, but they 

simplify LSTMs and reduce the computational complexity, so it might be worthwhile 

to incorporate these changes into the architecture. 

3. FGR greatly increased the number of parameter but did not significantly improve 

performance and even make it worse, so don’t use it. 



Observations-performance
4. NIG, NOG and NIAF had no significant effect on music modeling performance. We 

can hypothesize that these behaviors will generalize to similar problems such as 

language modeling.



Observations-impact of hyperparameters
Higher order: The percentage of variance that is due to interactions between multiple 

parameters. (TIMIT)



Observations-impact of hyperparameters



Observations-impact of hyperparameters
1. Learning rate is by far the most important hyperparameter. The next is the hidden 

layer size, followed by the input noise.

2. Higher order interactions play an important role in the case of TIMIT.

3. While searching for a good learning rate for the LSTM, it is sufficient to do a coarse 

search by starting with a high value (e.g. 1.0) and dividing it by ten until performance 

stops increasing.

4. TIMIT: 



Observations-Impact of hyperparameters



Observations-impact of hyperparameters
5. Larger network (bigger hidden layer size) perform better, and the required training 

time increases with the network size.

6. Adding Gaussian noise on the inputs almost always hurts performance and slightly 

increase training times. The only exception is TIMIT.

7. Momentum affects neither performances nor training time.



Conclusion
1. The most commonly used LSTM architecture(vanilla LSTM) performs reasonably 

well on various datasets and using any 8 possible modifications does not significantly 

improve the LSTM performance.

2. Certain modifications such as coupling the input and forget gates or removing 

peephole connections simplify LSTM without significantly hurting performance.

3. The forget gate and the output activation function are the critical components of the 

LSTM block. 



Conclusion
4. Learning rate and network size are the most crucial tunable LSTM hyperparameters. 

The use of momentum was found to be unimportant. Gaussian noise on the inputs was 

found to be moderately helpful for TIMIT, but harmful for other datasets.

5. The analysis of hyperparameter interactions revealed that even the highest measured 

interaction (between learning rate and network size) is quite small. This implies that 

the hyperparameters can be tuned independently. In particular, the learning rate can 

be calibrated first using a fairly small network, thus saving a lot of experimentation 

time. 



Thank you!


