Introduction

Our project aims to build a Mandarin-English mixlingual ASR.

The mixlingual speaking habit brings a code-switching phenomenon, where more

than one language occurs within an utterance. This is very common in many mul-

tilingual countries.

For example, the following sentence involves an intra-sentence code-switching:
Deep learning project presentation 5B due

which means “Deep learning project presentation is due tonight”. We want to

tackle this code-switching challenge using hybrid models.

Traditional ASR uses GMM-HMM system, which assumes Gaussian distribution

of speech signals as associated with each of HMM states. However, this fixed dis-

tribution assumption is not necessarily true. Neural Nets come in to learn features

and provides posterior for decoding without assuming any particular structure of

the data. Our project shows hybrid systems improves the traditional GMM-HMM

system by 10% absolute on this Mandarin-English Code-Switching in South-East

Asia (SEAME) mixlingual dataset we acquired from Linguistic Data Consortium

(LDC).
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Fig 2. GMM-HMM illustration:

Fig 1. HMM Parameters:

Qkj = P(Sjlsk):
where ay; is the transition probability from state k to state j.

b.’f (:E) = p(fl?'Sj),
where b; is the emission probability from state j to sequence X.
GMM provides posterior b;.
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Fig 3. Hybrid System Diagram.

1) cut waveform into frames with equivalent length,

and then extract MFCC features from each frame.

2) run GMM on each frame to get b;(0;) associated with each
frame o;

3) use transition probability ar; and emission probability b;
to calculate the probability that a frame being generated by a
state sequence,

whichever sequence has the highest probability,

the model will output it as the best path.

In the hybrid model, instead of using GMM,
we use Deep Neural Nets to estimate posterior
probabilities. The output of the neural network is
the probability of a phone class given the feature
P(s;j|z). In order to compute the emission proba-
bility P(z|s;) (b;j(z)) for HMM, we uses the Bayes
Rule: P(z|s;) = P(sj|x) x P(x)/P(s;), which can
be simplified as P(z|s;) P(s;|z)/P(s;) ( this is
okay, as P(z) does not depend on the class s;).
This being said, we scaled the neural net output
by class priors P(s;), in order to get the emission

probability for HMM.

Here GMM-HMM creates the forced alignment between features and phone states. These phone states served
as targets for the Deep Neural Networks, while the inputs to DNN are the usual features. The Neural Net-
work provides the conditional probability, which can be scaled as emission probability for the HMM.
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Data Preprocessing (Transcript Clean up) & Data Description

Acoustic Data Information: Language Data Information:

46 hours of audio. 159 unique Speakers in total, 'I‘raining set: Enghsh 01014 1244/9560 = (.13

14 speakers in test set. 46613 utterances in total, Training set: Chinese oov 831/3683 = 0.23
3392 utterance in test set.

The raw transcripts were preprocessed according to following rules:

- transform fullwidth forms to halfwidth forms

- split Chinese characters and English words if concatenated without space (e.g., sorry. /N7 -> sorry
FANZ)

- correct misspelled phrases (e.g., abit -> a bit)

- remove all annotation signs that are not explained in documentation, including % and " (e.g.,
%chelsia% -> chelsia)

- remove annotation sign for word of foreign language in case the word exists in cmu dictionary (e.g.,
#sushi# -> sushi)

- fix wrong annotation (e.g., [ppl] -> (ppl), ppl -> (ppl))

- replace annotations with SIL index (e.g., [oh] -> SIL2)

- remove single period ( .)

- remove other punctuation, like ? and )

- remove utterances having unsegmented Chinese characters (length of Chinese segment > 4, like M S

N IRIE A FEML)
- split Chinese OOV words into characters to reduce OOV rate

Acoustic Features & Language Model
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- followed by de-correlation and dimensionality reduction Fig 4. Snippet of unigram, bi-gram, tri-gram in
to 40 using linear discriminant analysis (LDA). our language model.

- The resulting features are further decelerated using We used a tri-gram language model based on the
maximum likelihood linear transform (MLLT), which is unique words showing up in our training dataset.

also known as global semi-tied covariance (STC).
We followed Kaldi recipe on Voxforge to generate the
aforementioned features.

. Fig 6. HCLG.fst
Ksil/<eps><eps>/0 98047 . a fully expanded decoding graph (HCLG) that
represents the language-model, pronunciation dic-
tionary (lexicon), context-dependency, and HMM
structure in our model. The output is a Finite
State Transducer that has word-ids on the out-
put, and pdf-ids on the input (these are indexes
that resolve to Gaussian Mixture Models).
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Network Description:
We used a Maxout (p-norm) Network for our baseline DNN.
p-norm is a “dimension-reducing”’ non-linearities.

P-norm.

y = llzll, = (C; |z:fP) '/ :
where the vector x represents a small group of input.
The performance of p-norm outperforms rectified linear units(ReLU)
and tanh units [1].
There is also a “normalization layer” that scales down “the
whole set of activations if necessary to prevent the standard
deviation from exceeding 1.” [2]
o is the uncentered standard deviation of z;:

o= \/I/KZ?;(:B,,;)?
where z; is the input.
40 x 11 = 440 input dimensions The nonlinearity is:

1000 context-dependent phones

Fig 5. Baseline Network Structure yi = { | c<l
In our network p is set to 2 (a.k.a Euclidean Norm), and we zifo, o>1
have 4 hidden layers, mini-batch size of 512, 8 epochs, 40 (LDA)

x11 input dims (audio feature), 1000 output dims (context- This is applied directly after p-norm (without a layer of weights
depsTeEl tetpliones); 800 foe hidder layer Gutpit dik: in-between) to stabilize unbounded-output nonlinearities.

Table 1. Effect of Transcript Cleanup on WER under LDA-MLLT
Acoustic Model

Modification WER
Chinese OOV split into characters 65.90%

Chinese OOV split into characters + Merge 64.27% - LDA-MLLT model is trained on alignment
SIL ' of first triphone pass, which is trained and
Chinese OOV split into characters + English 67.59% aligned on the result of monophone system.

OOV fixed/lexicon inserted - To our surprise, fixing English OOV words

Chinese OOV split into characters + Merge 66.33% and inserting lexicons reduces WER.
SIL + English OOV fixed/lexicon inserted '

Table 2. Comparison of GMM-HMM Models and Hybrid Models

Featur GMM-HMM Hybrid Hybrid o - _ { N
cate WER WER Details - DNN model is from Kaldi nnet2 recipe.

e A2 S DNN e hebrid DNN neins MFCC
MFCC + pitch 63.54% 52.82% DNN - e DS o~

and pitch features, with 52.82% WER and 45.66%
FBank 63.84% 54.19% CNN CER.

FBank + pitch 63.69% running CNN

Further Thoughts

We are going to check the following aspects to improve the performance, if time permits:

Transcript Improvement

- change British English to American English as in the CMU lexicon (e.g., specialise — > specialize)

- fix misspelled English words (e.g., avalable — > available)

Lexicon Dictionary Improvement

- combine simple words in lexicon to reduce OOV rate (e.g., hand + phone — > handphone)

- modify pronunciation in lexicon according to linguistic rules (as mentioned in [3])

Audio Data Augmentation

- change the speed of the audio signal, after which an average relative improvement of 4.3% in WER was
reported. [4]

- vocal tract length perturbation, or VILP, after which an average improvement of 0.65% in PER in DNN
and that of 1.0% in CNN was reported. [5]

Acoustic Model ReAlignment

- currently we are using a relatively naive acoustic model (monophone — > first triphone pass — > LDA_MLLT)
- an example shows that keep training and realigning can further reduce the WER by 15% on the basis of
that (... — > FMLLR — > SAT — > SGMM)

Language Model Improvement

- smoothing technique on n-gram language model, like Kneser-Ney or Good-Turing

RNN LM: RNN do not make the Markov assumption and so can, in theory, take into account long-term
dependencies when modeling natural language. The main advantages would be the greater representational
power of neural networks and their ability to perform intelligent smoothing by taking into account syntactic
and semantic features.
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