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Abstract—Recent insights on language and vision with neural networks have been successfully applied to simple single-image visual
question answering. However, to tackle real-life question answering problems on multimedia collections such as personal photo
albums, we have to look at whole collections with sequences of photos. This paper proposes a new multimodal MemexQA task: given a
sequence of photos from a user, the goal is to automatically answer questions that help users recover their memory about an event
captured in these photos. In addition to a text answer, a few grounding photos are also given to justify the answer. The grounding
photos are necessary as they help users quickly verifying the answer. Towards solving the task, we 1) present the MemexQA dataset,
the first publicly available multimodal question answering dataset consisting of real personal photo albums; 2) propose an end-to-end
trainable network that makes use of a hierarchical process to dynamically determine what media and what time to focus on in the
sequential data to answer the question. Experimental results on the MemexQA dataset demonstrate that our model outperforms strong
baselines and yields the most relevant grounding photos on this challenging task.

Index Terms—Photo albums, question answering, vision and language, focal attention, memex
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1 INTRODUCTION

A typical smartphone user may take hundreds of photos when on
vacation or attending an event. Within only a few years, one ends
up accumulating dozens of thousands of photos and many hours of
video, that capture cherishable moments from one’s past, such as
weddings, family gatherings or birthday parties. As discovered
in [21], people may use personal photos/videos as a mean of
recovering pieces from their memories about these events.

A natural way to recall the past memory is by asking questions,
e.g. when did we last visit the zoo? To tackle this challenging
problem, we propose a new VQA task named MemexQA1 2 3, a
new task for question answering on personal photo albums: given
a sequence of photos from a user, the goal is to automatically
answer questions about the past events captured in these photos.
For example, in Fig. 1, the input to a MemexQA system is a
question and a sequence of photos (images + metadata) ordered
by creation time, and the output is of a text answer and a few
grounding photos that justify the answer. The grounding photos
are necessary as not only are they useful in quickly verifying the
answer but also they provide vivid information to refresh user’s
memory about the asked event.

Over the past few years, a number of datasets have emerged
to promote research on the Visual QA (VQA) [3], [4], [14],
[16], [20], [24], [25], [45], [50], [56], [57], [58], [60], [64], [65].
However, none of them is suitable for our MemexQA research due
to the following key differences in the problem setting. First, our

• Lu Jiang is the corresponding author.

1. The term Memex was posited by Bush in 1945 [6] as an enlarged intimate
supplement to an individual’s memory.

2. Dataset and models are released at https://memexqa.cs.cmu.edu
3. This work improves and concludes the studies in [22], [32]

Fig. 1: MemexQA examples. The inputs are a question and a
sequence of a user’s photos with corresponding metadata. The
outputs include a short text answer and a few grounding photos to
justify the answer.

input is a sequence of personal photos as opposed to a single image
or video. Although some datasets [20], [50], [56] may contain
a sequence of images, these images are typically from a single
video or topic. Answering MemexQA questions, however, requires
reasoning over more than one photos spanning across multiple
topics or events. Second, an important piece of our output is the
grounding photo that can justify the answer. However, existing
datasets mainly focus on the answer accuracy whereas usually
do not provide such grounding photos. Third, MemexQA is a
multimodal QA task. Naturally, a personal photo is associated with
rich metadata such as the time, title or GPS information. Some

https://memexqa.cs.cmu.edu
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questions need to be answered together by the photo content and
metadata, e.g. in Fig. 1, the question “when did we last visit the
zoo?” needs to be answered by the “zoo” photos and “timestamp”
of the photo together. The rich multimodal information may not
always present in the existing VQA datasets.

To this end, this paper introduces the MemexQA dataset, the
first publicly available dataset that contains real-world personal
photo albums and questions about events captured in these photo
sets. We crowdsource 20,563 questions and answers on 13,591
personal photos from 101 real Flickr users. Out of the 13K photos,
about 5K photos are essential for answering the questions and
we have mainly verified the answer on these 5K photos. These
personal photos capture a wide variety of events of a user’s life
such as a trip to Japan, a wedding ceremony, a family party,
etc. The annotator is instructed to ask the question about the
main event/topic in all photos of a single user. The question is
supposed to be useful in recalling the memory of these events.
An answer includes a text answer as well as a few evidential
photos that justify the answer. MemexQA is an interesting yet
challenging task. Answering a MemexQA question is non-trivial
even for adults. As shown in our experiments, it takes an adult
more than a minute to answer a MemexQA question, which is 10x
longer than answering a VQA question. We consider MemexQA
to be a multimodal AI task and may catalyze interesting real-
world applications on the ever-increasing personal multimedia
collection.

There are two challenges in this new task.
First, personal albums involve rich information. A user usually

has multiple albums, as sequences of videos or images, ordered
according to their time stamps. For every photo or video, the user
may provide text annotations, tags, and other metadata. In this
paper, we call such input as visual-text sequence data. Note that
not all the photos and videos are annotated, which requires a robust
method to leverage inconsistently available multimodal data.

The second challenge regards interpretable justifications in
addition to direct answer based on sequence data. To help users
with a lot of photos and videos, a natural requirement is to identify
the supporting evidence for the answer. An example question as
shown in Fig. 1, is “when did we last visit the zoo?” From the
users’ viewpoint, a good QA system should not only give a definite
answer (e.g. April 11 2008), but also ground evidential images or
text snippets in the input sequence to justify the reasoning process.
The inspection process may be trivial for a single image but can
take a significant amount of time to examine every image and
the complete text words. We found that humans often need photo
evidence to quickly verify the answer.

To address these two challenges, we propose the Focal Visual-
Text Attention (FVTA) model for visual-text sequential data. Our
model is motivated by the reasoning process of humans. In order
to answer a question, a human would first quickly skim the input
and then focus on a few, small temporal regions in the visual-text
sequences to derive an answer. In fact, our statistics suggest that,
on average, humans only need 1.5 images to answer a question
after the skimming. Inspired by this process, FVTA first learns
to localize relevant information within a few, small, temporally
consecutive regions over the input sequences, and learns to infer
an answer based on the cross-modal statistics pooled from these
regions. FVTA proposes a novel kernel to compute the attention
tensor that jointly models the latent information in three sources:
1) answer-signaling words in the question, 2) temporal correlation
within a sequence, and 3) cross-modal interaction between the

text and image. FVTA attention allows for collective reasoning
by the attention kernel learned over a few, small, consecutive
sub-sequences of text and image. It can also produce a list of
evidential images/texts to justify the reasoning. To summarize, the
contribution of this paper is threefold:

• We introduce a new multimodal QA task, MemexQA, as
well as the first benchmark that contains questions about
real-world personal photo albums.

• We propose a novel attention kernel for VQA on visual-
text data. The proposed attention tensor can be used to
localize evidential image and text snippets to explain the
reasoning process.

• We empirically evaluate the performance of representative
VQA models as well as the human performance on this
new QA tasks, establishing the first experimental bench-
mark for future research to explore.

2 RELATED WORK

Consumer Photo Albums Understanding has been an important
research topic in the multimedia community. An album usually
contains a sequence of photos (some may also contain videos),
where a personal photo is associated with rich metadata such as
time, title, tags, or GPS information, and the sequence of photos
are arranged in the temporal order and a coherent context. A
number of methods have been developed to explore the photo
understanding or annotation within the album context [7], [8],
[9], [34], [62], especially on identifying persons and faces [30],
[31], [33], [63]. In this work, we improve previous researches
by considering personal photo albums in the Memex context. The
term “Memex” was first posited by V. Bush in 1945 as an enlarged
intimate supplement to an individual’s memory. Bush envisioned
the Memex as a device in which individuals would compress
and store all of their information, mechanized so that it may be
consulted with exceeding speed and flexibility [6]. The concept of
the Memex influenced the development of early hypertext systems,
eventually leading to the creation of the World Wide Web [12].
The proposed MemexQA focuses on the deep understanding of
the multimedia contents of albums, by answering questions related
to personal photos.

VQA Datasets. Our MemexQA work is partly motivated by
the problem of Visual QA (VQA), which has received a large
amount of attention and more than ten datasets have emerged to
promote the research [3], [4], [14], [16], [20], [24], [25], [37], [38],
[45], [50], [56], [57], [58], [60], [64], [65]. More recently, Kafle
et al. [26] proposed a VQA dataset for bar chart understanding,
which requires processing words and answers that are unique to a
particular bar char. Liu et al. [35] proposed the inverse problem of
visual question answering, iVQA, which was to generate a ques-
tion that corresponds to a given image and answer pair. Agrawal
et al. [1] proposed a new setting for VQA, VQA-CP, to overcome
priors for visual question answering. VizWiz [17] collected visual
questions from blind people and targeted to build systems that
could assist blind people. Embodied Question Answering [11],
[15], where an agent is spawned at at a random location in a 3D
environment and answers questions by exploring the environment,
was proposed to test a range of AI skills including language
understanding and commonsense reasoning. Due to the difference
in problem settings, these datasets are not directly applicable to
our MemexQA research. Compared to existing VQA datasets,
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Album Title: Aldo's 26th Birthday! Time: May 21 2005 Where: --Album Title: Alice's Birthday Weekend Time: August 28 2004, Where: --

it was a road trip. The restaurant had an open kitchen so we could ...

Q3: What did we do after 
dinner on May 21 2005?
A: tennis ball
B: went dancing
C: bowling
D: tie knot

Q1: Who's birthday did we 
celebrate in August 2004?
A: John
B: Jack
C: Alice
D: Lisa

Q2: How many of us 
took a group photo 
in the limo in 2004?
A: 1
B: 2
C: 7
D: 3

Q5: When did we 
last get into a limo?
A: February 14 2006
B: February 18 2005
C: August 28 2004
D: January 30 2005

Q4: What did we eat for 
Aldo's birthday?
A: bananas
B: steaks
C: pizza
D: sushi

Today was my bachelorette party. Lots of my friends 
were around. We went to a very fancy restaurant ...

Evidential 
Photos

Captions Captions

Alice's 25th Birthday Joy 
Ride

Alice's 25th Birthday 
Dinner

...

The superb chef @ the 
Sea Breeze Cafe Aldo's 26th Birthday.

...

Aldo's 26th Birthday. Aldo's 26th Birthday.

Fig. 2: Questions and four-choice answer in MemexQA. From the top to bottom are album metadata, photos from 2 albums, titles and
captions, questions, answer choices, and evidential photos. The green choice denotes the correct answer.

the MemexQA dataset is distinguished by the following features.
First, it is a goal-driven QA task over the photo sequence. By
answering the question and showing relevant photos, our goal is to
help users recover their memory about the asked event. Second, it
provides ground-truth evidential photos used by human to answer
the question. Third, MemexQA is a multimodal dataset. A big
proportion of questions need to be answered using both the image
and the text metadata.

Attention-based QA methods. In text domain, machine com-
prehension is a major task and big datasets like CNN/DailyMail
[18] and SquAD [44] have sparked many deep neural network
models [18], [46], [47], [54]. In the machine comprehension
task, systems are given a context paragraph of text to answer
question about it. [18] proposed a dynamic attention mechanism
where attention weights are updated dynamically based on the
question and the context text plus the previous attention. [47]
added memory network to compute attention weights and utilized
multi-turn reasoning. [46] calculated a similarity matrix between
each question word and each context word and used it to get bi-
directional attention.

Many attention mechanisms have been proposed to allow the
model to find important area in single image. [48] projected
the question representation and the image region features into a
common feature space to compute the attention weights for image
region feature concatenated with question vector. [10] compares
VQA models’ attention with human attention. [57] computed a
correlation matrix between each question word and each part of
the image, and then utilized a two-hop process to attend to the
correct area. The attended image feature is the input to the second
hop attention. [36] also computed a correlation matrix, and added
a layer to use it as a feature to compute the attention weights for
image and question. [59] used a stacked dynamic attention where
each layer’s attention is computed using last layer’s attended
feature and the original image. [40] used similar dynamic attention
but with memory network. More recenlty, bottom-up and top-
down attention network [2] using object detection model was
proposed to enable attention to be calculated at the level of objects
and other salient image regions. Nguyen et al. proposed stacked
dense symmetric co-attention [41] that formed a hierarchy for

multi-step interaction between an image-question pair. Differential
attention [42] was proposed to bridge the gap between human
attention and VQA model attention. Recent state-of-the-art meth-
ods’ attention mechanism has been focusing on different fusion
strategies between multimodal representations [5], [13].

This work can be viewed as a novel attention model for
multiple variable-length sequential inputs, to take into account not
only the visual-text information but also the temporal dependency.
Our work extends the previous studies of using attention model
for Image QA [5], [10], [13], [36], [40], [48], [57], [59]. A
key difference between our method and classical attention model
lies in the fact we are modeling the correlation at every time
step, across multiple sequences. Existing attention mechanisms
for VQA mainly focus on attention within spatial regions of an
image [65] or within a single sequence [20], and hence, may not
fully exploit the multiple sequences and multiple time steps nature.
As Fig. 6 shows, our attention is applied to a three-dimensional
tensor, while the classic soft attention model is applied to a vector
or matrix.

3 MEMEXQA DATASET

3.1 Data Collection

The data are annotated using Amazon Mechanical Turk (AMT),
an online crowd-sourcing platform. Fig 3 shows the web interface
of annotation. The annotation process can be viewed as 3 steps:
QA collection, candidate answers generation, and QA cleanup.

Questions & Answers (QA) Collection. We randomly select
101 real Flickr users from a public Flickr photo subset called
SIND [19]. The photos are under Creative Commons BY-NC-ND
2.0 license. Each user has at least 4 albums. In total, the dataset
consists of 20,563 question-answer pairs and of 13,591 personal
photos from 101 real Flickr users, organized in 630 albums.
During QA cleanup, 5,090 photos are shown to the annotators
to verify. For each photo, we collect a variety of multimodal
metadata which includes the timestamp, GPS location, photo title,
tags, album information, and captions, in which the GPS, title, tag,
album information, and captions can be missing for some photos.
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Fig. 3: Example of the annotation web interface. During questions and answers collection, annotators are given all the photos and
metadata information of the assigned Flickr user on the left of the screen. On the right, annotators are asked to generate different types
of questions and the corresponding answers. Meanwhile, they are also required to select evidence photos for each of the question.
During QA cleanup stage, annotators are asked to select answers for the questions given all relevant information. If they select the
wrong answers, they are asked to provide a reason why they make the mistakes, which will be used for the QA cleanup.

The online AMT workers are instructed to write important and
objective questions. Also, the answers need to be concise about the
main event or topic in the albums of a Flickr user. Each worker
is asked to write questions as if they were his/her own personal
photos. Specifically, one worker writes 4 questions/answers about
a single album, and for each answer, he is required to label one
or more evidential photos to justify the answers. Then for all
the user’s albums, the worker writes 12 questions and similarly
provide evidential photos for each answer. Fig. 2 shows some
examples questions, where the first three are questions within a
single album whereas the rests are for two albums.

Motivated by [21], we focus on five types of questions: “what”,
“who”, “where”, “when” and “how many”. As shown in the

previous study, the query terms in these categories are estimated
to account for more than 60% of Flickr’s personal photo search
traffic. We choose not to include the “show me” questions, as such
questions should be addressed by a separate text-to-image/video
module [23]. We acknowledge the assumption for collecting the
QA data: we require all questions can be answered by any
individual and not just by the owner of the album. Therefore,
the information beyond the photos and the metadata should not be
used in answering questions. Following this assumption, anyone
can ask and answer questions about the event as long as they
provide convincing evidential photos to justify the answer. This
leads to a more objective evaluation protocol.

Candidate Answers Generation. Following [65], we employ
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TABLE 1: Comparison of representative VQA datasets and our new dataset called MemexQA.

Datasets Data source Sequence
input

specific
goal-driven

Supporting/Grounding
Evidence

Personal
media

collection

metadata
time&GPS

DAQUAR [37] Depth images - - - - -

VQA [4], [16] Web images
(MSCOCO) - - - - -

FM-IQA [14] & TDIUC [25] Web images - - - - -
FVQA [52] Web images - - supporting facts - -
Visual Genome [29], [65] Web images (Flickr) - - image pixels - -
VizWiz [17] Personal photos - X - X

MSRVTT-QA [56] Web videos
(MSRVTT) X - - - -

TGIF-QA [20] Gif images X - - - -
MovieQA [50] Movies X X movie plots - -
Ours MemexQA Personal photos X X evidential photos X X

both human workers and automatic methods to generate a pool
of candidate answers as the multiple choice, which include four-
choice and twenty-choice answers. For the “what” question, can-
didate answers are automatically generated based on the answers
to similar questions in the MemexQA dataset as well as external
datasets such as VQA [4] and Visual Genome [29]. For other types
of questions, candidate answers are obtained by randomly select-
ing relevant user metadata. For example, for “when” questions,
the candidate answers are the dates of the user’s other photos.
For twenty-choice answers, we balance the choice by selecting
relevant candidate answers from all question types. The candidate
answers are then inspected by annotators to ensure there is only
one correct answer for each question.

QA Cleanup. All questions and answers need to be unambigu-
ous, objective and relevant to the event or topic of the photo. To
control the quality, each photo album is independently annotated
by at least three AMT workers. The QA along with candidate
answers are verified by another three workers, where they are
asked to select the correct answer from the provided multiple
choices. The workers report unreasonable questions or answers
when they find subjective questions, incorrect answers, or ques-
tions of more than one correct answers. We remove questions with
more than two worker reports. Besides, we also manually screen
the data and reject all QA pairs from low-quality AMT workers.
As a result, the collected data are of decent quality. The sampled
inter-human agreement is 0.9, which measures the percentage
of the questions having the same answer cross different AMT
workers. This number is comparable to existing representative
VQA datasets [4], [65].

3.2 Data Characteristics
MemexQA is the first publicly available dataset composed of real-
world personal photo albums and questions about events captured
in these photo sets. With the focus on questioning photo collection,
we believe that this new dataset nicely complements other VQA
benchmarks (see Table 1 for a list of related VQA datasets and
their differences with MemexQA) and that it would be an ideal
benchmark for language and vision research on a real-world
problem. Generally, compared to existing VQA datasets [3], [4],
[14], [16], [20], [24], [25], [45], [50], [57], [58], [60], [65], the
MemexQA dataset contains a few distinguishing characteristics.
First, MemexQA defines a goal-driven VQA task over a user’s
personal photos, where the goal is that by answering questions,
we help the users recover their memory in these photos. Personal
photos often capture a wide variety of real-life events with

Who
12.3%

Where
15.7%

How many
12.9%

When
16.8%

What
42.3%

Multiple
Albums
24.2%

Single 
Album
75.8%

Fig. 4: Question distributions by question types and question
albums/topics.

great sentimental value, such as the marriage proposal, gradua-
tion ceremony, family gathering, birthday party, etc. Second, the
MemexQA dataset contains a number of evidential photos for each
question. For example, for Q4 in Fig. 2, the evidential photos show
the birthday dinner and steak that help users quickly verify the
answer “steak”. Likewise, for Q5 the evidential photo shows the
group photo taken on the limo and its timestamp, which justify
the answer to the question “when did we last get into a limo?”.
Finally, MemexQA is a multimodal dataset. It encompasses rich
information including time, GPS location, metadata, etc. The mul-
timodal information makes it an ideal testbed for vision+language
research. Fig. 2 also shows the diverse sources from which an
answer can be derived, e.g. from title+time (Q1), image+time (Q2,
Q3, Q5), image+time+title (Q4).

3.2.1 Question Types and Topics
There are 5 types of questions in this dataset. The statistics of
question types are shown in Fig 4. Each question can be about
either a single album/topic (Fig. 2 Q1-Q3) or across multiple
albums/topics (Fig. 2 Q4 and Q5). The question distribution by
relevant albums is also shown in Fig. 4.

3.2.2 Question Difficulty
The level of difficulty of this dataset can also be indicated in
Table 2, where the percentage of answers directly found in text
metadata is shown. With 32% on ”What” questions and 46%
overall, it suggests that to find the correct answers, the system
has to reason and come up with words or phrases that do not exist
in the metadata most of the time.

3.2.3 Limitations
Here we discuss the limitations of the dataset: 1) we assume all
questions should be answerable by any individual and not just the
owner of the photos. Therefore, information that is not captured by
the photo or metadata should not be used in answering questions.
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TABLE 2: Percentage of answers found in text metadata excluding
answers from ”How many” questions.

Question Type Answer Found
in Text Metadata

What 32.61%
When 70.86%
Where 48.36%
Who 55.82%
Overall 46.09%

This may lead to lower recall yet a more objective approach for
evaluation. 2) the scale of the dataset is smaller compared to the
real-world setting. Each user only has 130 photos on average.
This is due to the reason that MemexQA is very expensive to
collect. In MemexQA, to write a question, AMT workers need to
not only inspect dozens of photos but also consult the supporting
multimodal information. As a result, we found that it takes on
average 96±10 seconds for annotators to write a MemexQA
question and 62±3 seconds to answer a question. It is about
10 times longer than writing or answering a question about a
single image. Given those restrictions, we consider the MemexQA
dataset to be reasonably large as the first benchmarks on which
different methods for this novel task can be compared. As shown
in Section 6 , the datasets are sufficiently large to train deep QA
networks of reasonable performance.

3.3 Human Performance

We examine the human performance on MemexQA. We are
interested in measuring 1) how well human can perform in the
MemexQA task, 2) what is the contribution of each modality in
helping users answer questions, and 3) how long does it take for
humans to answer a MemexQA question.

We conduct a series of controlled experiments, which is
evaluated with more than 150 human subjects (AMT workers).
The workers are asked to select an answer from 4 choices
given different information, which includes Questions, Answers,
Images, and Metadata (titles, descriptions, timestamps and GPS
(if any)). Table 3 summarizes the results. For example, Q+A+I
indicates the human performance of choosing the correct answer
by only looking at the question, answers, and images. As we see,
humans manage to correctly guess 50% of the correct answers
using common sense. With all information, the accuracy reaches
0.93, which is comparable to that on other VQA datasets (0.83
on VQA [4] and 0.97 on Visual7W [65]). The accuracy without
images drops significantly, which indicates that the MemexQA
task requires multimodal reasoning based on both vision and
language. We record the time spent on each QA pair and found
it takes on average 62 seconds for a human to answer a question,
which is 10 times longer than answering a VQA question (about
5.5 seconds [65]). This suggests that an automatic system with
exceeding speed and decent accuracy will provide great benefit to
users.

TABLE 3: Human Performance on MemexQA. Q, A, I and M
denote question, answer, image and metadata, respectively.

Input how many what when where who overall
Q+A 0.57 0.41 0.50 0.52 0.46 0.52
Q+A+I 0.93 0.73 0.90 0.85 0.76 0.86
Q+A+M 0.71 0.60 0.77 0.64 0.56 0.67
Q+A+I+M 0.94 0.87 0.96 0.96 0.86 0.93

4 APPROACH

4.1 Problem Formulation

We start the discussion by formally defining the problem. Let
Q = q1, · · · , qM represent a question of M words Q ∈ ZM ,
where each word is an integer index in the vocabulary. Define a
context visual-text sequence of T examples X = x1, · · · ,xT ,
where for each example, ximg

t represents an image. xtxt
t is its

corresponding text sentence, where its i-th word is indexed by
xtxt
ti . Following [4], [65], the answer to a question is an integer
y ∈ [1, L] over the answer vocabulary of size L. Given a collec-
tion of n questions and their context sequences, we are interested
in learning a model maximizing the following likelihood:

argmax
Θ

n∑
i=1

logP (yi|Qi,Xi; Θ) (1)

where Θ represents the model parameters. Given the visual-text
sequence input Ximg,Xtxt, we obtain a good joint representation
by attention model. With FVTA attention, the model takes into
account of the sequential dependency in image or text sequence,
respectively, and cross-modal visual-text correlations. Meanwhile,
the computed attention weights over input sequences can be
utilized to derive meaningful justifications.

4.2 Network Architecture

This subsection discusses our overall neural network architecture.
As shown in Fig. 5, the proposed network consists of the following
layers.
Visual-Text Embedding Every image or video frame is encoded
with a pre-trained Convolutional Neural Network. Both word-level
and character level embedding [28] are used to represent the word
in text and question.
Sequence Encoder We use separate LSTM networks to encode
visual and text sequences, respectively, to capture the temporal
dependency within each individual sequence. The inputs to the
LSTM units are image/text embedding produced by the previous
layer. Let d denote the size of the hidden state of the LSTM unit;
the question Q is represented as a matrix Q of concatenated
bi-directional LSTM outputs at each step, i.e. Q ∈ R2d×M ,
where M is the maximum length of the question. Likewise,
The sequentially encoded text and images are represented by
H ∈ R2d×T×2, where T is the maximum length of the sequence.
Focal Visual-Text Attention The FVTA is a novel layer to
implement the proposed attention mechanism. It represents a
network layer that models the correlations between questions and
multi-dimensional context and produces the summarized input to
the final output layer, i.e., h̃ ∈ R2d and q̃ ∈ R2d. We will discuss
FVTA in the next section.
Output Layer After summarizing the input using the FVTA atten-
tion, we use a feed-forward layer to obtain the answer candidate.
For open-ended setting as described in Section 6, where there is no
choice input, the task is to find the answer given the context and
the question and the final probability across all possible answers
is given by p = softmax(wT

p [q̃; h̃; q̃� h̃]), where the operator
[·; ·] represents the concatenation of two matrices or vectors along
the last dimension. � is the element-wise multiplication, wp is
the weight vector to learn and p is a vector of classification
probability. In practice we find this simple equation works better
than fully connected layer or straightforward concatenation. For
multiple-choices questions, let k denote the number of candidate
answer choices, we utilize the bi-directional LSTM to encode
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Fig. 5: An overview of Focal Visual-Text Attention (FVTA) model. For visual-text embedding, we use a pre-trained convolutional
neural network to embed the photos and pre-trained word vectors to embed the words. We use a bi-directional LSTM as the sequence
encoder. All hidden states from the question and the context are used to calculate the FVTA tensor. Based on the FVTA attention, both
question and the context are summarized into single vectors for the output layer to produce final answer. Here the output layer is for
open-ended setting while in multiple-choice setting, the text embedding of the answer choice is also used as the input, which is not
shown in this figure.

each of the answer choice and use the last hidden state as the
representation for answers E ∈ Rk×2d. We tile the context
representation h̃ and attended question representation, k times
into H̃ ∈ Rk×2d and Q̃ ∈ Rk×2d to compute the classification
probability of k choices:

p = softmax(wT
p [Q̃; H̃;E; Q̃�E; H̃�E]) (2)

After obtaining the answer probability, the model can be trained
end-to-end using cross-entropy loss function.

5 FOCAL VISUAL-TEXT ATTENTION

This section discusses the details of FVTA model as the key
module in our VQA system. We first introduce similarity metric
between visual and text features, then discuss constructing the
attention tensor that captures both intra-sequence dependency and
inter-sequence interaction.

5.1 Similarity between visual and text features
To compute the similarity across different modalities, i.e. visual
and text, we first encode every modality by the LSTM networks
with the same size of hidden states. Then we measure the differ-
ences between these hidden state variables. Following the study in
text sequence matching [53], we aggregate both the cosine similar-
ity and Euclidean distance to compare the features. Moreover, we
choose to keep the vector information instead of summing up after
the operation. The vector representation can be used as the input
of a learning model, whose inner product represents the similarity
between these features. More specifically, we use the following
equation to compute the similarity representation between two
hidden state vectors v1 and v2. The result is a vector of twice
the hidden size:

s(v1,v2) = [(v1 � v2); (v1 − v2)� (v1 − v2)]. (3)

5.2 Intra-sequence temporal dependency
Our visual-text attention layer is designed to let the model select
related visual-text region or timestep based on each word of the
question. Such fine-grained attention is in general nontrivial to

learn. Meanwhile, most answers for visual-text sequence inputs
may be constrained and restricted in a short temporal period. We
learn such localized representation, called focal context represen-
tation, to emphasize relevant context states based on the question.

First, we introduce a temporal correlation matrix, C ∈ RT×T ,
a symmetric matrix where each entry cij measures the correlation
between context’s the i-th step and the j-th step for a question. Let
hi = H:i: ∈ R2d×2 denote the visual/text representation for the i-
th timestep in H. For notation convenience, : is a slicing operator
to extracts all elements from a dimension. For example, hi1 =
H:i1 represents the vector representation of the i-th timestep of
the visual sequence. Here we denote the last index 1 for visual
and 2 for textual modality. Each entry Cij (∀i, j ∈ [1, T ]) is then
calculated by:

Cij = tanh
2∑

k=1

w>c (w>h s(hik,hjk) + Q:M ) (4)

where wc ∈ R2d×1 and wh ∈ R4d×2dare parameters to learn.
The temporal correlation matrix captures the temporal dependency
of question, image and text sequence.

To allow the model to capture the context between timesteps
based on the question, we introduce temporal focal pooling to
connect neighboring time hidden states if they are related to the
question. For example, it can capture the relevance between the
moment “dinner” and the moment later, “Went dancing”, given the
question “What did we do after the dinner on Ben’s birthday?”.
Formally, given the time correlation matrix C and the context
representation H, we introduce a temporal focal pooling function
g to obtain the focal representation F ∈ R2d×T×2. Each vector
entry F:tk (∀t ∈ [1, T ],∀k ∈ [1, 2]) in F is calculated by:

F:tk = g(H;C, t, k)

=
T∑

s=1

1[s ∈ [t− c, t+ c]]Csthsk,
(5)

where F:tk is the focal context representation at t-th timestep for
visual (k = 1) or text (k = 2). 1 is the indicator function. c stands
for the size of the temporal window that is a hyper-parameter. We
constrain the model to focus on a few small temporal context
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Fig. 6: Comparison of our FVTA and classical VQA attention
mechanism. FVTA considers both visual-text intra-sequence cor-
relations and cross sequence interaction, and focuses on a few,
small regions. In FVTA, the multi-modal feature representation in
the sequence data is preserved without losing information.

windows of size 2c + 1. We design this function based on the
intuition that most answers are constrained in a short temporal
period and its efficacy has been proven in the ablation studies.

5.3 Cross Sequence Interaction
In the previous section, we describe how we construct a sequen-
tial context representation within each modality. In this section,
we introduce the attention mechanism to capture the important
correlation between visual and textual sequences. We apply such
attention over the focal context representation to summarize im-
portant information for answering the question.

Firstly, we obtain the attention weights based on a tensor S
between each word of the question and each timestep of the visual-
text sequences. We computes a kernel tensor, S ∈ RM×T×2,
between the input question and the focal context representation
F, where each entry in the kernel smtk models the correlation
between the m-th word in question and at t-th timestep over the
modal k (images or text words). Let vtk denote the focal context
representation F:tk at t-th timestep for visual or text. Each entry
smtk in S is calculated by:

smtk = κ(F:tk,Q:m) = κ(vtk,q)

= tanh(w>s s(vtk,q) + bs)
(6)

where κ is a function to compute the correlation between question
and context, ws ∈ R4d×1 is the learned weights and bs is the bias
term. s is the mapping defined in (3). As explained for Eq. (4),
we use such similarity representations since they capture both the
cosine similarity and Euclidean distance information.

Based on attention weight tensor S, we obtain the visual-
text sequence attention matrix A ∈ RT×2 by A =
softmax(maxM

i=1(Si::)) and the visual-text attention vector
B ∈ R2 by B = softmax(maxT

i=1 maxM
j=1(Sji:)), where the

softmax operation is applied to the first dimension. The maximum
function maxi is used reduce the first dimension of the high-
dimensional tensor. Then the attended context vector is given by:

h̃ =
2∑

k=1

Bk

T∑
t=1

AtkF:tk ∈ R2d (7)

Similarly, we compute the question attention D ∈ RM by
D = softmax(maxT

i=1 max2
j=1(S:ij)) and the summarized

question vector is given by:

q̃ =
M∑

m=1

DmQ:m ∈ R2d (8)

Algorithm 1 summarizes the steps to compute the proposed
FVTA attention. To obtain a final context representation, we first
summarize the focal context representation separately for visual
sequence and text sequence, emphasizing the most important
information using the intra-sequence attention. Then, we obtain
the final representation by summing the sequence vector represen-
tation based on the inter-sequence importance. Fig. 6 illustrates the
difference between FVTA attention tensor and one-dimensional
soft attention vector. Both mechanisms compute the attention but
FVTA considers both visual-text intra-sequence correlations and
cross sequence interaction.

Algorithm 1: Computation of Focal Visual-Text Attention.

input : Input visual-text sequence X, Question Q
output: The FVTA vector h̃

1 Encode X into H by the visual-text embedding and
sequence encoder in Sec. 4.2;

2 Encode Q into Q by the question encoder;
3 Compute C by Eq. (4) // temporal correlation

4 Compute F by Eq. (5) // intra-sequence dependency

5 Compute S by Eq. (6) // cross-sequence interaction

6 Reduce F with S to the FVTA h̃ by Eq. (7);
7 return h̃;

6 EXPERIMENTS

6.1 Setup
This section evaluates the MemexQA task: given a question and
a sequence of personal photos, the goal is to find an answer
and a few grounding photos that support the answer. As other
VQA datasets do not satisfy our problem setting, we choose the
MemexQA dataset as the main testbed. We divide the training
and test split with 85%, 15% of the total QA pairs respectively,
and further sample 20% of the training pairs as the validation set.
We use version 1.1 of the dataset and the 5k photo collection as
described in Section 3 is used as context input. The dataset and
models are released at https://memexqa.cs.cmu.edu.
Evaluation Settings. We evaluate a model in terms of two
input settings, answering questions with or without choices input
(Multiple-choice Questions vs. Open-ended Questions). Under
each input setting, we evaluate the models in terms of the precision
of selecting the correct answer out of 4 or 20 candidate choices.
For the multiple-choice question setting, following the evaluation
protocol in the VQA challenge [13], we embed answer choices
as input to the model in the multiple-choice setting and the model
will output the probabilities over the given candidate answers. For
the open-ended question setting, no answer embedding is used

https://memexqa.cs.cmu.edu
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Method how many what when where who overall
(11.8%) (41.9%) (16.2%) (17.2%) (12.9%)

Bag-of-words + CNN features w/ SVM - / 0.251 - / 0.224 - / 0.229 - / 0.243 - / 0.266 - / 0.237
Bag-of-words + Semantic features w/ SVM - / 0.270 - / 0.243 - / 0.260 - / 0.263 - / 0.246 - / 0.253
Multi-Layer Perceptron 0.520 / 0.714 0.284 / 0.478 0.152 / 0.297 0.151 / 0.229 0.051 / 0.266 0.238 / 0.406
Embedding + LSTM 0.759 / 0.771 0.457 / 0.602 0.269 / 0.356 0.367 / 0.405 0.323 / 0.369 0.429 / 0.518
Embedding + LSTM + Concat 0.773 / 0.804 0.489 / 0.662 0.277 / 0.366 0.396 / 0.465 0.371 / 0.426 0.457 / 0.567
DMN+ [55] 0.783 / 0.790 0.559 / 0.663 0.326 / 0.389 0.472 / 0.539 0.431 / 0.440 0.517 / 0.584
Multimodal Compact Bilinear Pooling [13] 0.761 / 0.800 0.558 / 0.681 0.319 / 0.377 0.490 / 0.571 0.473 / 0.545 0.521 / 0.609
Bi-directional Attention Flow [46] 0.766 / 0.790 0.525 / 0.689 0.283 / 0.356 0.484 / 0.567 0.415 / 0.468 0.493 / 0.598
Soft Attention 0.776 / 0.795 0.546 / 0.697 0.311 / 0.346 0.523 / 0.604 0.459 / 0.582 0.520 / 0.621
TGIF Temporal Attention [20] 0.764 / 0.761 0.532 / 0.700 0.271 / 0.522 0.434 / 0.582 0.382 / 0.477 0.481 / 0.630
FVTA 0.728 / 0.761 0.628 / 0.714 0.354 / 0.476 0.607 / 0.676 0.611 / 0.668 0.590 / 0.669

TABLE 4: Comparison of different methods on MemexQA multiple-choice setting by question type. The first five methods do not
use the attention mechanism. We show both 20 and 4 choice evaluation in XXX/YYY, respectively. - are infeasible due to the high
dimensionality of input features.

and the model will output probabilities over all possible answers.
Since in MemexQA dataset there is only one answer per question,
we take the argmax over the multiple choice answers at test time
for evaluating open-ended questions.
Evaluation Metrics. In addition to the accuracy, we also measure
the model’s capability of finding correct grounding photos for
answering questions by looking at whether the ground truth evi-
dence photos are in the top-k outputted grounding photo (HIT@k).
An ideal model would have a high accuracy as well as a decent
HIT@k.
Baseline Methods. A large proportion of the existing solutions
is to project image or videos into an embedding space, and
train a classification model using these embeddings. We imple-
ment the following methods as baselines: Bag-of-words + CNN
features w/ SVM is a naive baseline where textual information
is represented by bag-of-words feature and concatenated with
Convolutional Neural Network features for photos, which is used
for classification with Support Vector Machine. Bag-of-words +
Semantic features w/ SVM utilizes high-level semantic feature for
photos instead of CNN features. They are extracted using Google
Cloud Image API. Multi-Layer Perceptron uses feed-forward
layers to extract visual-text features into the same dimension
and predicts the final answers with one fully connected layer
using the concatenated image, question and metadata features.
Embedding + LSTM utilizes word embeddings and character
embeddings, along with the same visual embeddings used in
FVTA. Embeddings are encoded by LSTM and averaged to get
the final context representation. Embedding + LSTM + Concat
concatenates the last LSTM output from different modalities to
produce the final output. On the other hand, we compare the
proposed model to a rich collection of VQA attention models:
Classic Soft Attention uses classic one dimensional question-to-
context attention to summarize context for question answering. A
correlation matrix between each question word and context is used
to compute the attention as in [46], [57]. DMN+ is the improved
dynamic memory networks [55], which is one of the representative
architectures that achieve good performance on the VQA Task. We
implement the DMN+ network with each sentence and each photo
representation used in our proposed network as supporting facts
input. Multimodal Compact Bilinear Pooling (MCB) [13] is a
recent competitive method on VQA [4] dataset. The spatial atten-
tion in the original model is directly used on the sequential images
input. The hyperparameters including the output dimension of
MCB are selected based on the validation results. Bi-directional
Attention Flow (BiDAF) implements the single-modal attention

flow model [46] overall concatenated context representations with
embeddings as in FVTA network. TGIF Temporal Attention
[20] is a recently proposed spatial-temporal reasoning network
on sequential animated image QA. Since other baseline methods
do not use spatial attention, we compare the TGIF network with
temporal attention only. TGIF temporal attention uses a simple
MLP to compute the attention and only the last hidden state of the
question is considered. We compute the attention following [20]
and use the same output layer in our method.
Implementation Details. In MemexQA dataset, each question
is asked to a sequence of photos organized in albums. A photo
might have 5 types of textual metadata, including the album title,
album descriptions, GPS Locations, timestamp and a title. We
use N to denote the maximum number of albums, K for the
maximum number of photos in an album and V for the maximum
words. For album-level textual sequences like album titles and
descriptions, the K dimension only has one item and others are
zero-padded. We also use zeros to pad those positions with no
word/image. We encode GPS locations using words. The photos
and their corresponding metadata form the visual-text sequences.
All questions, textual context and answers are tokenized using
the Stanford word tokenizer. We use pre-trained GloVe word
embeddings [43], which is fixed during training. For image/video
embedding, we extract fixed-size features using the pre-trained
CNN model, Inception-ResNet v2 [49], by concatenating the
pool5 layer and classification layer’s output before softmax. We
then use a linear transformation to compress the image feature
into 100 dimensional. Then a bi-directional LSTM is used for
each modality to obtain contextual representations. Given a hidden
state size of d, we concatenate the output of both directions of the
LSTM and get a question matrix Q ∈ R2d×M and context tensor
H ∈ R2d×V×K×N×6 for all media documents. We reshape the
context tensor into H ∈ R2d×T×6. We select the best hyper-
parameters based on performance on the validation set except for
the focal pooling window size, which is set to 3. We use cross-
entropy loss for both the open-ended setting and multiple-choice
setting. We use the AdaDelta [61] optimizer and an initial learning
rate of 0.5 to train for 200 epochs with a dropout rate of 0.3. We
find L2 weight regularization not useful therefore we don’t use
any. In the multiple-choice question answering setting, we also
use character embedding concatenated with the word embedding
across all baselines and the LSTM hidden size is set to 50. In
the open-ended setting, the LSTM hidden size is 128 and we do
not use temporal focal pooling for the FVTA model so that it
has a similar number of parameters compared to TGIF and Soft
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Method how many what when where who overall
(11.8%) (41.9%) (16.2%) (17.2%) (12.9%)

Bag-of-words + CNN features w/ SVM 0.771 / 0.776 0.121 / 0.292 0.099 / 0.192 0.086 / 0.342 0.029 / 0.343 0.177 / 0.348
Bag-of-words + Semantic features w/ SVM 0.764 / 0.778 0.118 / 0.290 0.061 / 0.190 0.067 / 0.357 0.022 / 0.360 0.164 / 0.352
Multi-Layer Perceptron 0.757 / 0.766 0.084 / 0.249 0.080 / 0.215 0.046 / 0.314 0.013 / 0.295 0.147 / 0.322
Embedding + LSTM 0.754 / 0.757 0.166 / 0.309 0.272 / 0.305 0.199 / 0.359 0.191 / 0.330 0.262 / 0.372
Embedding + LSTM + Concat 0.723 / 0.728 0.192 / 0.328 0.314 / 0.326 0.202 / 0.365 0.215 / 0.345 0.279 / 0.384
DMN+ [55] 0.752 / 0.754 0.218 / 0.335 0.264 / 0.267 0.257 / 0.367 0.295 / 0.330 0.305 / 0.378
Multimodal Compact Bilinear Pooling [13] 0.740 / 0.742 0.208 / 0.411 0.387 / 0.391 0.206 / 0.490 0.244 / 0.492 0.304 / 0.471
Bi-directional Attention Flow [46] 0.711 / 0.730 0.252 / 0.411 0.297 / 0.305 0.240 / 0.444 0.257 / 0.424 0.312 / 0.439
Soft Attention 0.728 / 0.733 0.237 / 0.402 0.307 / 0.309 0.229 / 0.438 0.233 / 0.462 0.305 / 0.440
TGIF Temporal Attention [20] 0.780 / 0.783 0.223 / 0.346 0.326 / 0.339 0.220 / 0.365 0.290 / 0.369 0.314 / 0.403
FVTA 0.740 / 0.759 0.303 / 0.487 0.412 / 0.431 0.227 / 0.533 0.288 / 0.552 0.357 / 0.526

TABLE 5: Comparison of different methods on MemexQA open-ended setting by question type. The first five methods do not use the
attention mechanism. We show both 20 and 4 choice evaluation in XXX/YYY, respectively.

Attention. It takes about 48 hours to train the FVTA model with
temporal focal pooling and about 20 hours without on a Nvidia
TITAN X GPU.

6.2 Baseline Comparison
6.2.1 Multiple-choice Questions
In the multiple-choice setting, we embed the candidate answers
as input to the model. Table 4 compare the accuracy on the
MemexQA with multiple-choice input. We evaluate all the models
with both 4 and 20 answer candidate input for comprehensive
comparison. As we see, the proposed method consistently out-
performs the baseline methods and achieves the state-of-the-art
accuracy on this dataset. The first 5 methods in the table show
the performance of embedding methods without any attention.
Although embedding methods are relatively simple to implement,
their performance is much lower than the proposed FVTA model.
The experiment results advocate the attention model among im-
ages and image sequences. Compare to previous attention mod-
els, our FVTA network significantly outperforms other methods,
which proves the efficacy of the proposed method.

6.2.2 Open-ended Questions
We also compare FVTA to these methods under the harder open-
ended question answering setting, where no answer candidate is
provided during training and the model will output probabilities
over all possible answers. During testing, we evaluate each model
with both the 4 and 20 choice metrics where we select the highest
probability answer output among the candidate choices. The result
is shown in Table 5. As we see, the proposed method consistently
outperforms the baseline methods overall again under the open-
ended setting. Our approach also achieves the best performance
across most of the question types and metrics.

6.2.3 Grounding Quality Comparison
Since the overall accuracy is not perfect, users need grounding
photos to verify the answer. The attention mechanism outputs an
attention value to each photo, which reflects the importance of
the photo used in answering the question. We rank the photos
using the attention values as the grounding photos. To evaluate
the quality of these grounding photos, we compute the correlation
(HIT@k) between the ground-truth evidential photos and the top-
k outputted grounding photos. A perfect correlation means the
model derives the answer using the exact same photo used by
human annotators. An ideal VQA model should not only enjoy
a high accuracy in answering a question (Table 5, 4) but also

HIT@1 HIT@3 mAP
MCB 11.98% 30.54% 0.269±0.005
BiDAF 6.36% 19.50% 0.203±0.004
Soft Attention 1.16% 12.60% 0.168±0.002
TGIF Temporal 13.28% 32.83% 0.289±0.005
FVTA 15.48% 35.66% 0.312±0.005

TABLE 6: The quality comparison of the learned FVTA and
classic attention. We compare the image of the highest activation
in a leaned attention to the ground truth evidence photos which
human used to answer the question. HIT@1 means the rate of
the top attended images being found in the ground truth evidence
photos. AP is computed on the photo ranked by their attention
activation.

can find images that are highly correlated to the ground-truth
evidence photos. We compare the grounding quality among the
multiple-choice setting models. Table 6 lists the accuracy to
examine whether a model puts focus on the correct photos. FVTA
outperforms other attention models on finding the relevant photos
for the question. The results show that the proposed attention
can capture salient information for answering the question. For
qualitative comparison, we select some representative questions
and show both the answer and the retrieved top images based on
the attention weights in Fig. 9. As shown in the first example,
the system has to find the correct photo and visually identify the
object to answer the question ”what did the daughter eat while
her dad was watching during the trip in June 2010?”. FVTA
attention puts a high weight on the correct photo of the girl eating
a corn, which leads to correctly answering the question. Whereas
for soft attention, the one-dimensional attention network outputs
the wrong image and gets the wrong answer. This example shows
the advantage of FVTA modeling the correlation at every time
step, across visual-text sequences over the traditional dimensional
attention. Overall, FVTA not only outputs the correct answers but
also gives the correct justifications, which is very useful in real life
application where users would want to verify the system’s results.
While MCB and TGIF attention gets some of the answers correct,
they output the wrong image.

6.2.4 Model Complexity Comparison
To investigate the differences of model complexity, we compare
the number of float-point operations and parameters between
different methods. As shown in 7, where we plot the number
of parameters for different models against their accuracy in the
open-ended setting evaluation. As we see, FVTA achieves the
best accuracy with slightly more parameters than most methods,
and requires less parameters than the popular MCB method on
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Fig. 7: Accuracy versus number of parameters (left) and computational demand versus the number of photo input (right) across different
models. Computational demand is measured in the number of floating-point operation (FLOPS) to process the given number of photo
input. The FLOPS numbers for other methods are in addition to the LSTM baseline’s FLOPS. We only compare LSTM-based methods.
Embedding + LSTM + concat has about 3x more FLOPS in general and thus omitted.

Fig. 8: Example failure cases of FVTA model on MemexQA
dataset. Our model finds the correct grounding photos in both
cases but fails to choose the correct answers due to the limitations
discussed in Section 6.3.1.

VQA dataset. To compare computational demand, we compare
the number of floating-point operations (FLOPS) across different
methods. To have a fair comparison, we only compare methods
that are based on LSTM. DMN+ uses a modified GRU which
results in much fewer FLOPS. We subtract all other method’s
FLOPS with the baseline LSTM method and show the relative
numbers. As we see, FVTA requires slightly more computation
than TGIF as the number of photo input increases. In future work,
we will look into reducing the computation demand for FVTA
which is especially important for long sequence input.

6.3 Ablation Study

Table 7 shows the performance of FVTA mechanism and its
ablations on the MemexQA dataset. We evaluate them under
the multiple-choice question setting (except the last row) and
with both 4 and 20 candidate answers. Firstly, we conduct a
baseline experiment with only question inputs. LSTM is used to
encode the question and the last hidden states are used directly to
predict the answers. To evaluate the FVTA attention mechanism,
we first replace our kernel tensor with simple cosine similarity

function. Results show that standard cosine similarity is inferior
to our similarity function on both metrics. For ablating intra-
sequence dependency, we use the representations from the last
timestep of each context document. For ablating cross sequence
interaction, we average all attended context representation from
different modalities to get the final context vector. Both aspects
of correlation of the FVTA attention tensor contribute towards
the model’s performance, while intra-sequence dependency shows
more importance in this experiment. We have also trained our
model without temporal focal pooling, which means we use the
context hidden states H to replace the use of focal context
representation F. The result shows that temporal focal pooling
contributes to the model accuracy. We compare the effectiveness
of context-aware question attention by removing the question
attention and use the last timestep of the LSTM output from
the question as the question representation. It shows the question
attention provides slight improvement. Finally, we train FVTA
with photo input only and text input only to see the contribution
of visual and text information. Both results show that visual
information serves a more important role but both visual and
text information have significant influence. The result for the text-
only model is good but it is perhaps not surprising due to the
language bias in the questions and answers of the dataset, which
is not uncommon in VQA dataset [4] and in Visual7W [65].
This also suggests significant rooms of improvement with visual
information. In the last row of Table 7, we also conduct the photo-
only model experiment under the open-ended question setting.
Comparing the same model under multiple-choice setting, the rela-
tive performance drops are similar, suggesting the effect of visual-
text information is similar despite different question settings.

6.3.1 Limitations & Error Analysis

In this section, we investigate the limitations of the proposed
method and conduct error analysis on the multiple-choice setting
model.
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Ablations 4-C ∆ 20-C ∆

Question-only 0.405 -26.3% 0.213 -37.6%
FVTA w/ Cosine Similarity 0.619 -4.9% 0.499 -9.0%
FVTA w/o Intra-seq 0.569 -10.0% 0.507 -8.2%
FVTA w/o Cross-seq 0.604 -6.5% 0.566 -2.9%
FVTA w/o Focal Pooling 0.613 -5.5% 0.561 -2.3%
FVTA w/o Question Attention 0.629 -4.0% 0.553 -3.7%
FVTA w/o Photos 0.577 -9.1% 0.477 -11.2%
FVTA w/o Metadata 0.603 -6.6% 0.511 -7.9%
FVTA w/o Metadata
(Open-Ended) 0.481 -4.5% 0.313 -4.4%

TABLE 7: Ablation studies of the proposed FVTA method on the
MemexQA dataset. The last column shows the performance drop.

Scalability. As shown in the FLOP analysis in Fig 7, the gap be-
tween our model’s computation demand and the baseline LSTM’s
grows linearly as the number of photo input increases. In the
real-world scenario, personal photos are usually in the scale of
thousands, which may render our method infeasible. In future
work, additional methods to reduce the attention computation
complexity over long sequences should be considered.
Lack of Spatial Reasoning. As shown in Fig. 8 on the left, even
though our model selects the correct grounding photo, it fails to
choose the correct answer due to lack of spatial reasoning abilities
(the color of the pillow is ”red” but the entire photo is mainly
made of ”red and yellow”). Although it is straightforward to add
spatial attention to the current model, the problem of scalability
will arise as directly adding spatial attention will add an order of
magnitude of computation.
Lack of Common Scene Understanding. As shown in Fig. 8
on the right, the model finds the correct grounding snippet but
is unable to choose the correct answer. It is clear that the model
lacks common scene understanding capabilities and it seems to
find the answer based on some language prior learned from the
training set. One future direction could be to take advantage of
low-level tasks like single-image Visual Question Answering and
scene classification to incorporate common knowledge such as
scene understanding.

6.4 MovieQA Experiments
To validate the efficacy of the proposed method, we also conduct
experiments on the MovieQA dataset [50].
Dataset The MovieQA dataset consists of 140 movies and 6,462
multiple choice QA pair. Each QA pair contains five answer
choices with only one correct answer. Systems are required to
answer the questions given a number of movie clips from the
same movie and the corresponding subtitles. More details of the
dataset can be viewed in [50].
Implementation Details In the MovieQA dataset, each QA is
given a set of N movie clips of the same movie, and each clip
comes with subtitles. We implement FVTA network for MovieQA
task with modality number of 2 (video & text). We set the
maximum number of movie clips per question to N = 20,
the maximum number of frames to consider to F = 10, the
maximum number of subtitle sentences in a clip to K = 100 and
the maximum words to V = 10. Visual and text sequences are
encoded in the same way as in the MemexQA experiment. We use
the AdaDelta [61] optimizer with a minibatch of 16 and an initial
learning rate of 0.5 to trained for 300 epochs. A dropout rate is set
at 0.2 during training. The official training/validation/test split is
used in our experiments.
Experimental Results We compare FVTA with recent results
on MovieQA dataset, including End-to-End Memory Network

Method Val Test
SSCB [50] 0.219 -
MemN2N [50] 0.342 -
DEMN [27] - 0.300
Soft Attention 0.321 -
MCB [13] 0.362 -
TGIF Temporal [20] 0.371 -
RWMN [39] 0.387 0.363
FVTA 0.410 0.373

TABLE 8: Accuracy comparison on the test and the validation
set of the MovieQA dataset. The test set performance can only
be evaluated on the MovieQA server, and thus not all the studies
provide the accuracy on Test set.

(MemN2N) [51], Deep Embedded Memory Network (DEMN)
[27], and Read-Write Memory Network (RWMN) [39]. Table 8
shows the detailed comparison of MovieQA results using both
videos and subtitles. FVTA model outperforms all baseline meth-
ods and achieves comparable performance to the state-of-the-art
result 4 on the MovieQA test server. Notably, RWMN [39] is
a very recent work that uses memory net to cache sequential
input, with a high capacity and flexibility due to the read and
write networks. Our accuracy is 0.410 (vs 0.387 by RWMN) on
the validation set and 0.373 (vs 0.363) on the test set. Benefiting
from such modeling ability, FVTA consistently outperforms the
classical attention models including soft attention, MCB [13] and
TGIF [20]. The result demonstrates the consistent advantages
of FVTA over other attention models in question-answering for
multiple sequence data.

Fig. 10 illustrates the output of our FVTA model. FVTA can
not only predict the correct answer, but also identify the most
relevant subtitle description as well as the movie clip frames.
As shown in Fig. 10, FVTA can provide fine-grained level jus-
tifications such as the most informative movie frames or subtitle
sentences, whereas most of the existing methods cannot find fine-
grained justifications from the attention computed at the movie
clip level. We believe the results show the benefits and potentials
of FVTA model.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new VQA task and presented
the first public dataset of real personal photo albums to the
research community to study this interesting problem. To address
this problem, we presented a novel neural network model called
Focal Visual-Text Attention network for answering questions over
visual-text sequences. FVTA employed a hierarchical process to
dynamically determine which modality and snippets to focus on
in the sequential data to answer the question, and hence can
not only predict the correct answers but also find the correct
supporting justifications to help users verify the system’s results.
The comprehensive experimental results demonstrated that FVTA
achieves comparable or even better than state-of-the-art results
on the proposed dataset as well as the MovieQA benchmark of
sequential visual-text data. We consider our work as the first
step towards solving this new QA problem, establishing the
experimental benchmark for future research to explore. Our future
work includes improving the scalability of FVTA and extending
FVTA to large scale long visual-text sequences.

4. The best test accuracy on the leaderboard by the time of paper submission
(Aug. 2018) is 0.42 (A2A: Attention to Attenion). It is not included in the table
as there is no publication to cite.
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Fig. 9: Qualitative comparison of FVTA model and other attention models on the MemexQA dataset. For each question, we show the
answer and the images of the highest attention weights. Images are ranked from left to right based on the attention weights. The correct
images and answers have green border whereas the incorrect ones are surrounded by the red border.

Fig. 10: Qualitative analysis of FVTA on the MovieQA dataset. It shows the visual justification (movie clip frames) and text justification
(subtitles) based on the top attention activation. Both justifications provide supporting evidence for the system to get the correct answer.
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