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ABSTRACT

Sentiment analysis is crucial for extracting social signals from so-
cial media content. Due to huge variation in social media, the per-
formance of sentiment classifiers using single modality (visual or
textual) still lags behind satisfaction. In this paper, we propose a
new framework that integrates textual and visual information for
robust sentiment analysis. Different from previous work, we be-
lieve visual and textual information should be treated jointly in a
structural fashion. Our system first builds a semantic tree structure
based on sentence parsing, aimed at aligning textual words and im-
age regions for accurate analysis. Next, our system learns a robust
joint visual-textual semantic representation by incorporating 1) an
attention mechanism with LSTM (long short term memory) and 2)
an auxiliary semantic learning task. Extensive experimental results
on several known data sets show that our method outperforms exist-
ing the state-of-the-art joint models in sentiment analysis. We also
investigate different tree-structured LSTM (T-LSTM) variants and
analyze the effect of the attention mechanism in order to provide
deeper insight on how the attention mechanism helps the learning
of the joint visual-textual sentiment classifier.
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eInformation systems — Multimedia information systems; In-
formation systems applications; eComputing methodologies —
Computer vision; eGeneral and reference — Measurement;
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1. INTRODUCTION

Many classical studies [7, 15, 14, 19, 42] in integrating visual
and textural features follow similar procedures. First, image infor-
mation and text information are treated separately using different
domain-specific knowledge and techniques in computer vision and
natural language processing. Next, the individual representations
of two moralities will be integrated to build the final classifier. Very
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Figure 1: An example image tweet about a car accident, where
the associated text significantly helps learning an effective vi-
sual representation for sentiment analysis. Words related to
the objects and visual attributes are closely related to regions
with matching colors.

few studies have considered models that can explore deeper corre-
lation between the visual and textural representations.

Figure 1 shows an example that suggest an image and the asso-
ciated text should be treated in a closely knit fashion. There are
a number of objects and attribute descriptors in the text, including
“people”, “car”, “bus”, and “accident”, which are associated with
specific regions in the image. If we are to parse such correlated
text and image content accurately, these words and image regions
should be modeled jointly in an intimate fashion.

The recent progress in sentence parsing suggests that the seman-
tic features of sentences can be well modeled by a tree-structured
model with semantic dependency [28, 15]. We propose to uti-
lize such a structured model for multimodal visual-textual analysis.
To model the visual features with the semantic parsing tree, we
employ deep neural networks to model both textual and visual se-
mantics. In particular, we generalize the standard Recurrent Neural
Networks [31] by considering the regions of attention in the image,
and build a unified model to leverage the information from the two
modalities.

In this work, we intend to bridge the gap between vision and lan-
guage using a tree-structured model on both image and text for joint
visual-textual sentiment analysis. Figure 1 includes one image and
sentence pair to illustrate our motivation. Generally, sentiment or
opinion related words can be aligned to certain image regions. We
are interested in discovering such kinds of alignments and subse-
quently building a robust joint model for sentiment analysis. Fol-
lowing previous studies on tree-structured Long Short-Term Mem-
ory (LSTM) over text [33, 44], we integrate image regions into the
model using an attention mechanism. In particular, we propose a
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Figure 2: Steps of building a tree-structured LSTM (T-LSTM) model for joint sentiment analysis given a pair of sentence and image.

bilinear attention model to learn the relatedness between words and
image regions. Consequently, the model is capable of structurally
encoding both local vision and language features into a global se-
mantic embedding feature space. Figure 2 shows the main steps
of the proposed framework for joint sentiment analysis. The in-
puts to our model are pairs of image and its description. We em-
ploy CNN (convolutional neural network) for visual feature extrac-
tion. Next, we build a tree-structured Long Short-Term Memory
(T-LSTM) model on top of the parsing trees to learn the joint fea-
ture representations. The attention mechanism is employed to learn
the alignment between image regions and descriptive words. The
hidden responses at the root node of the tree are provided as inputs
to build a sentiment classifier in the end.

We apply our proposed model to the specific problem of ana-
lyzing sentiment from associated text and image. The problem of
sentiment understanding of images has become popular in recent
years [35, 4, 2, 42]. In particular, You et al. [42] proposed a cross-
modality consistent regression (CCR) scheme for joint textual-visual
sentiment analysis. Their approach employs deep visual and tex-
tual features to learn a regression model. By encouraging a consis-
tent prediction between different modalities, their model achieved
better performance over other different fusion models. However,
almost all the previous work use simple early fusion or late fu-
sion to combine two moralities, overlooking structured informa-
tion coupling between the text and image. In contrast, our system
introduces: 1) the use of an attention mechanism on local image
regions and 2) joint visual-textual representation learning through
tree-structured LSTM. Our system is capable of learning the se-
mantic mapping between image regions and the words in the asso-
ciated sentence. In addition, tree-structured LSTM facilitates the
encoding of structured information into the joint semantic embed-
ding. We compare the proposed model with several state-of-the-art
baselines extensively on several data sets. The experimental results
demonstrate the superiority of the proposed joint tree-structured
model.

We make the following contributions in this work:

e We employ tree-structured LSTM (T-LSTM) for joint textual-
visual sentiment analysis, which leads to better mapping be-
tween textual words and image regions,

e We introduce a bilinear attention model to facilitate a ro-
bust joint textual-visual feature representation, and prevent
the model from being dominated by single modality.

e We adopt a Siamese network as an auxiliary task to learn
the semantic embedding between text and image, helping the
attention mechanism to achieve high effectiveness.

e Our proposed framework outperforms the state-of-arts in three
existing datasets and one new collected dataset.

In the following sections, we first briefly introduce LSTM and
tree-structured LSTM. Next, we present the details of the compo-
nents of the proposed framework. Finally, we describe the design
of the experiments and analyze the results.

2. RELATED WORK

Computer vision and natural language processing are important
application domains of machine learning. Recently, deep learn-
ing has made significant advances in tasks related to both vision
and language [16]. Conseuquently, the task of higher-level seman-
tic understanding, such as machine translation [1], image aesthetic
analysis [18], and visual sentiment analysis [3, 41] have become
tractable. A more interesting and challenging task is to bridge the
semantic gap between vision and language, and thus help solve
more challenging problem.

The successes of deep learning make the understanding and jointly
modeling vision and language content a feasible and attractive re-
search topic. In the context of deep learning, many related publi-
cations have proposed novel models that address image and text si-
multaneously. Starting with matching images with word-level con-
cepts [7] and recently onto sentence-level descriptions [15, 28, 19,
20, 14], deep neural networks exhibit significant performance im-
provements on these tasks. Despite of the fact that there are no
semantic and syntactic structures, these models have inspired the
idea of joint feature learning [30], semantic transfer [7] and design
of margin ranking loss [38].

Notably, automatic image captioning is widely studied [20, 6,
5, 34, 14], which more intimately connects visual content and lan-
guage semantics. Instead of learning a semantic mapping space for
image and sentence pairs, automatic image captioning systems are
expected to generate a sentence describing the given image. Image
features are commonly integrated into the generation of the cap-
tions, which is typically modeled by a neural language model.

In general, these models handle two primary tasks: 1) how to
represent image and text, and 2) how to learn the model on top of
visual and textual features. Indeed, Convolutional Neural Networks
(CNNs) [16, 27, 32] become the common approaches for extracting



visual features. Meanwhile, multimodal semantic mapping follow-
ing a pairwise ranking loss is widely adopted for optimizing joint
visual and textual models. Recently, different approaches, includ-
ing sequential [15, 20, 14] and tree-structured models [28, 19], are
selected to encode the text, among which Recurrent Neural Net-
works [31] and Recursive Neural Networks [29] are particularly
popular. Indeed, both sequential and recursive models are closely
related to the language and semantic attributes of text. On the other
hand, visual content also have spatial and semantic structures [22].
Tree-structured models can benefit vision tasks in many ways [29,

]. However, there have been few previous studies which connect
the tree structures in both vision and text.

In this work, we focus on joint visual-textual sentiment analy-
sis, which is an important task of bridging vision and language se-
mantics. Different from the widely studied textual sentiment anal-
ysis [23], visual sentiment analysis is quite new and challenging.
There are several recent works on visual sentiment analysis using
initially pixel-level features [26], then mid-level attributes [2, 43],
more recently deep visual features [4 1] and soical contextual infor-
mation [37, 36]. These approaches have achieved acceptable per-
formance on visual sentiment analysis. However, due to the com-
plex nature of visual content, the performance of visual sentiment
analysis still lags behind textual sentiment analysis.

There are also several publications on analyzing sentiment using
multi-modalities, such as text and image. Both [35] and [4] em-
ployed both text and images for sentiment analysis, where late fu-
sion is employed to combine the prediction results of using n-gram
textual features and mid-level visual features [2]. More recently,
You et al. [42] proposed a cross-modality consistent regression
(CCR) scheme for joint textual-visual sentiment analysis. Their
approach employed deep visual and textual features to learn a re-
gression model. Their model achieved the best performance over
other fusion models, however, overlook the structured mapping be-
tween image regions and words.

Our work is built on the long short-term memory (LSTM) model.
In the next section, we will first introduce some basics of LSTM
and then discuss our new model.

3. LONG SHORT-TERM MEMORY (LSTM)
NETWORKS

For completeness, we present a brief introduction of the sequen-
tial LSTM model. With a Recurrent Neural Network (RNN), we
are trying to predict the output sequence {y1,y2,...,yr} given
the input sequence {x1,x2, ..., z7}. Between the input layer and
the output layer, there is a hidden layer, and the current hidden state
h; is estimated using a recurrent unit (Eq.(1)):

hy = f(htfhxt) (1

where z; is the current input, h;_ is the previous hidden state and
f () accepts both z; and h:—1 as inputs and produces the current
output h;. f(-) can be an activation function or other unit, such
as long short-memory cell, which is one of the most widely de-
ployed architectures [8]. Long short-memory cell can overcome
the gradient vanishing issue [24]. Each LSTM cell ¢ is controlled
by an input gate ¢, an output gate o and an forget gate f, which is
able to remember the error during the error propagation [12]. Sub-
sequently, LSTM is capable of modeling long-range dependencies
[14].

Let W*, W/, W° represent the parameters of the input, forget
and output gate respectively. ©® denotes the element-wise multi-
plication between two vectors. o is the logistic sigmoid function.
The precise form of LSTM cell is described in the following equa-

tions [9, 11, 10]. For conciseness, we omit all the bias terms of
linear transformations in the paper.
iv = o(Wixy +Wihi—1) 2)
fo = o(Wla+Wihi1) (3
or = o(Wizt +Wphi1) C))]
¢ = ftO©ci—1+i ©tanh Weoae + Wihe—1)  (5)
ht = o:® tanh(c) (6)

LSTM cells can also be used in non-sequential models. Recently,
it has been utilized within tree structured models [33, 44]. Informa-
tion is no longer propagated sequentially from current node to the
next node as in sequential LSTM architectures. In tree-structured
LSTM (T-LSTM) model, each internal node of the tree collects in-
formation from all of its child nodes and propagates the processed
information to its parent node. In such a way, the hidden state ob-
tained at the root node of the tree is considered to be the joint rep-
resentation of the inputs at the leaf nodes of the tree. Each non-leaf
node 7 in the tree is modeled using a LSTM cell. It will receive the
hidden state of its j-th child as the j-th input. To accept multiple
inputs, we use the following equations [33] to define the forward
computation for a node ¢ from all of its child nodes.
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where N; is the number of child nodes for node ¢ and k!, is the
hidden state from its n-th child. Each leaf node is sequentially
mapped to the words of the input sentence according to the parsing
tree. During the backward propagation, the errors are back propa-
gated from parent node to all of its child nodes'. Existing work of
using T-LSTM for sentiment analysis are limited to textual analysis
only. We will explain in the next section on how to generalize it to
multimedia context.

A key challenge of using both image and text in T-LSTM is that
one modality will dominate the model so that the resulted model’s
performance will be similar to the one with single modality. To
solve this problem, we extend the attention model [!] using bi-
linear attention model. Different from the previous works in at-
tention model [39] for image captioning. However, The model in
[39] is based on sequential LSTM while this work is based on tree-
structure LSTM. Another main difference between [39] and this
work is that we use a bilinear model for attention, which is more
effective in practice. Last but not the least, this paper studies the
problem in a discriminative setting, while the method in [39] is
based on a generative model, which is not applicable for sentiment
estimation. The next section will explain our model in details.

4. PROPOSED SCHEME FOR SENTIMENT
ANALYSIS

"We refer the readers to [44] for the detailed formulas of back prop-
agation.




In this section, we present how to apply the tree-structured T-
LSTM model for joint visual-textual sentiment analysis. Our ap-
proach is mainly motivated by the findings that tree-structured mod-
els can benefit vision tasks [29, 40]. Our system incorporates both
the attention mechanism and an auxiliary semantic learning task to
learn a robust joint visual-textual semantic representation. Conse-
quently, we are able to learn a more accurate and robust sentiment
classifier.

4.1 T-LSTM for Joint Sentiment Analysis

T-LSTM relies on tree-structures for learning and testing. In-
spired by both [33] and [44], we also learn the T-LSTM over a
parsing tree, which encodes the syntactic structure of a given sen-
tence.

Figure 3: The scheme of the joint visual-textual tree-structured
LSTM. We produce each leaf node (rectangle node) from a
joint module. The joint module has two inputs, a word and re-
gions of an image. Each internal node can receive information
from multiple children nodes. The information is processed us-
ing a LSTM cell. The output of each node is forwarded to its
parent node.

Most of previous works on T-LSTM are based on text (single
modality). Next, we will explain how to generalize it to multi-
modality scenario where a pair of sentence and image (t"*, v"") are
taken into account jointly. We take the hidden state at the root node
of the T-LSTM as the representation for the sentence and image
pair. Next, this representation can be supplied as input to build a
softmax classifier for sentiment analysis. In such a way, we can
solve the problem of joint visual-textual sentiment analysis. We
employ the negative log-likelihood (NLL) to define the cost:

p(h[t™,v™]) = softmax (W, h[t™,v™]) (12)
L(t™,v™) = —log (p(h[t™,v™]), lm) (13)

where h[t™,v™] is the hidden state at the root node of a T-LSTM,
W is the parameters for a linear model, and [, is the sentiment
label for the m-th image and sentence pair. The overall network
can be trained using back propagation.

To learn and establish the joint representation h[t™,v™] of a
given pair of sentence and image (t"*, v""), we focus on the leaf

nodes, which directly accept textual words and visual representa-
tions as inputs. In particular, we want the leaf nodes of T-LSTM
to jointly accept both individual words and image regions and pro-
duce its output based on both inputs. Eventually, the root node of
the parsing tree will learn a joint embedding by receiving both the
visual and the textual information propagated structurally from the
leaf nodes. In such a way, we are able to integrate the visual infor-
mation into the tree-structures. Figure 3 shows the overall frame-
work of the proposed scheme. Each internal node is an LSTM
memory cell. Meanwhile, each leaf node is a joint model, which
tries to produce outputs from the input word and the input image
regions.

A key challenge of introducing both image and text into T-LSTM
is that one modality will dominate so that the resulted model’s per-
formance will be similar to the one with single modality. In the
following subsection, we use a bilinear attention model as the joint
module to learn the alignments and produce the outputs of leaf
nodes simultaneously.

4.2 Bilinear Attention Model

Given a image and one descriptive sentence of the image, we
assume that words of the sentence are likely associated with some
regions in the image. Our goal is to automatically find such kind of
connections between the words and the image regions. Let T' =
{t1,t2,...,tm} denote a sentence with m words and let V' =
{v1,v2,...,v,} denote the regions of an image, and n is the num-
ber of image regions. In attention model, for each word ¢;, a score
a;; (1 < 7 < n)is assigned to each image region v; based on its
relevance with the content of v;. As a common approach to model
relevance in vector space, a bilinear function is used to evaluate
Qijt

Qi o @ (t?Uvj) , (14)

where the «;.s are taken to normalize over all the {v;}, o(-) is a
smooth function, and U is the weight matrix to be learned. One

popular choice for () is the exp(+) as in the s ction.
output
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Figure 4: The bilinear attention model architecture for the leaf
node. The attention model produces z;, which is the concatena-
tion of ¢; and weighted sum of mappings of {v; }. z; is provided
to a LSTM cell to produce the output for its parent node.

Image Region n J
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Once calculated, the attention scores are used to modulate the
strength of attention on different image regions. The weighted sum
of all candidate regions is mapped from visual feature space to the
input word space of ¢;:

v =k (Uv). (15)
k=1



We obtain a weighted visual feature mapping v° for the current
word ;. Let x; = [v"; ;] be the concatenation of v’ and ¢;, which
is the output produced by the attention model and supplied as the
input to an LSTM memory cell (see Eq. (2) to Eq. (6)). In this way,
we are able to integrate the visual information into the T-LSTM
model. The whole bilinear attention model architecture for each
leaf node is illustrated in Figure 4.

4.3 Semantic Embedding Learning

We hope that the attention model is able to assign correct atten-
tion weights between the input words and the feature regions for
a given image and sentence pair. However, a sentiment analysis
classifier mainly focuses on the performance of the joint features
on sentiment analysis. There is no mechanism that explicitly helps
the learning of alignments or correspondences between words and
image regions. In other words, the attention model may not learn
to assign semantically similar image regions to the corresponding
words by optimizing on the gradients passed down from a senti-
ment classifier. Instead, a more secure approach is to explicitly
utilize another task which will semantically learn the mapping or
correspondence between words and image regions.

Inspired by the recent successes of deep visual-textual seman-
tic embedding learning [14, 15, 19], we incorporate the semantic
learning task to pilot the learning of attention model. Let (t™,0™)
be a sentence and image pair, and v™ (randomly picked from the
training set) be a contrasting image of ¢"*. We then use the previ-
ously introduced T-LSTM model with the bilinear attention mech-
anism to encode both (t"*,0™) and (¢™,0™). Next, the pairwise
margin ranking function is optimized to learn the semantic embed-
ding:

L™, 0™, ™) = max (0, 11 — g(AIE™, v™]) + g(h[t™, v"]))
(16)

where g(-) learns the embedding score given the hidden features
h[t™,v™] and A[t™,v"] from T-LSTM. This objective function
tries to make sure that the score defined by g(-) is at least greater
than p for correct pair (¢t™,v"") compared to the contrastive pair
™, om).

Similar to [19], we use a multi-layer perceptron (MLP) to learn
the score of each sentence and image pair given their hidden state.
In particular, we define g(-) as follows:

g(hi) = Wz (6(Wih:)) 17

where W5 and WY are the parameters of the MLP and §(-) is the
activation function for the hidden state. In our implementation, we
use tanh(-) as the activation function.

Another observation is that the calculation of attention weights
a in Eq.(14) is inappropriate for learning semantic embedding. Re-
call the attention weights « are non-negative. It is assumed that the
sentence ¢t is supposed to describe the content of the image v™.
With this assumption, the attention model tries to discover the cor-
respondence between the text words of ¢;* and the image regions
of v;". Therefore, softmax function is chosen as the smooth func-
tion for ¢(-) (Eq.(14)). However, in the semantic learning task, we
have randomly picked a negative image v", whose content may be
totally irrelevant of ¢"*. Therefore, the attention weights defined in
Eq.(14) could mislead the attention model given an unrelated im-
age and sentence pair v™ and ¢t as training data. To avoid this
kind of misleading or false attention, we introduce the following
way to calculate the attention weights (for simplicity, we ignore the
superscript):

Bij max(0, t; Uv;) (18)
ai; = ¢(Bij) (19)

where ¢ is the smoothing function. We use tanh(-) to smooth «
instead of exp(-) as in Eq.(14). In such a way, we intend to achieve
the following: 1) negative correspondences are ignored (Eq.(18))
and 2) « falls into reasonable value ranges (Eq.(19)).
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Figure 5: A multi-task learning framework for jointly train-
ing the sentiment classifier as well as the semantic embedding.
(t™,v™) is the correct sentence and image pair and v" is a ran-
domly picked image from the training set. W, and W, are
shared parameters for T-LSTM and the scoring MLP, respec-
tively.

4.4 Multi-task Learning for Joint Sentiment
Analysis

Our model can be trained by a simultaneous optimization of
both the sentiment analysis and the embedding tasks. Figure 5
shows the overall structure of the proposed model with the two
tasks. The semantic embedding learning task is implemented using
a Siamese network, where the parameters of T-LSTM (W in Fig-
ure 5) and the parameters of the scoring MLP (W5 in Figure 5) are
shared. The loss of one training image-sentence pair is the sum-
mation of the sentiment classifier loss (Eq. (13)) and the margin
ranking loss (Eq.(16)). For each training pair (™, v™), we ran-
domly choose one image v™ to make a contrasting pair (¢™,v"),
which is also given as the input to the semantic embedding module.
The overall loss function is

Lme = L™, ™) + L' (™, 0™, 0"™). (20)

All the parameters are automatically learned by minimizing the
two loss functions over a training set. We use a mini-batch gradient
descent algorithm with an adaptive learning rate to optimize the
loss functions.

S. EXPERIMENTS

To the best of our knowledge, the work in [42] was the first study
on joint textual-visual sentiment analysis using deep neural fea-
tures. They also collected three data sets from Gettylmage and
Twitter, respectively, to evaluate their cross-modality consistent re-
gression (CCR) model. We focus on comparing our proposed mod-
els with the baselines in [42]. In addition, we also add two base-



Table 1: Summary of the models included in our evaluation. The first five models are from [42]. The last three models are our

proposed models.

Model Description

Single Visual Model

Logistic regression on deep visual features from pre-trained CaffeNet model.

Single Textual Model | Logistic regression on paragraph feature vectors [17] of text.

Early Fusion

Logistic regression on concatenated visual (CaffeNet) and textual features.

Late Fusion

Average of logistic regression sentiment score on both visual and textual features.

CCR Cross-modality consistent regression (CCR) [42]

T-LSTM

Using T-LSTM model on the text only without attention.

T-LSTM Attention

Using T-LSTM model with attention model between text words and image regions.

T-LSTM Embedding

Learn the T-LSTM model and the semantic embedding simultaneously.

Table 2: Statistics of the four data sets.
Data Set Positive | Negative | Total
Getty 311,940 | 276,281 | 588,221
Twitter 16,884 | 14,700 31,584
Twitter AMT | 389 224 613
VSO-VT 129,524 | 124,993 | 254,517

lines 1) T-LSTM on text only, and 2) T-LSTM on both text and im-
age but without the semantic embedding task. Table 1 summarizes
the different joint models for sentiment analysis. We also provide
a short description for each model.

5.1 Data Sets

To test our proposed algorithms, we include the three datasets
from previous work [42] and additionally build a new dataset for
joint textual-visual sentiment analysis . We will briefly describe the
several data sets. Next, we will compare the performance results of
the proposed approach with other state-of-the-art approaches.

The first data set is from Getty Image. It was built by query-
ing the Getty image search engine with different sentiment key-
words. The authors were able to collect a large data set contain-
ing about 588, 000 sentence-image pairs. Possibly, the data sets is
noisy. However, the noise is tolerable due to the relatively formal
and clean descriptions of images as argued in [42]. Meanwhile,
since we use the same dataset, the noise is fair to all the candidate
algorithms.

The second data set is from Twitter. More specifically, it contains
image tweets (tweet messages that contain images). The dataset is
relatively small after pre-processing. In total, it has 31, 584 weakly
labeled image tweets. This dataset is also considered weakly la-
beled in that all the labels were generated by a predefined rule-
based sentiment classifier. The last one is a small image-tweet
dataset labeled by Amazon Mechanical Turk. In total, there are
only 613 image tweets.

In addition, we build another weakly labeled dataset for evalua-
tion. This new dataset is built on top of the visual sentiment ontol-
ogy (VSO) [3], which consists of millions of images collected by
querying Flickr with thousands of adjective and noun pairs (ANPs).
Each ANP has hundreds of images collected from Flickr. However,
this dataset only has the URLs of the images. There is no descrip-
tion for each image. Fortunately, Flickr has provided the API*,
which enables us to obtain the metadata (descriptions, upload date,
tags, and so on) of an image by supplying its unique ID. Therefore,
we are able to build a dataset for joint textual-visual sentiment anal-
ysis by collecting their Flickr descriptions using the provided APIL.
After removing the invalid images that no longer exist, and elimi-

Zhttps://www.flickr.com/services/api/

nating images with too long (more than 100 words) and too short
(less than 5 words) descriptions, we obtain 254, 517 images. Ta-
ble 2 summarizes the statistics of the four datasets, where VSO-VT
is the newly built dataset by us on top of the visual sentiment on-
tology.

5.2 Experimental Settings

To build a T-LSTM model, first we need to build a tree structure.
In this work, we use the semantic constituency parsing tree, which
was employed in [33] to build a tree-structured LSTM. We also
employ the Stanford Parser’, which is one of the state-of-the-art
parsers, to build the parsing tree for each sentence.

Next, we need to choose feature representations for textual words
and images. For word representation, there are two popular ap-
proaches. The first is one-hot representation with an embedding
layer. In particular, the goal is to map a word w; with representa-
tion w; = [0,...,1;,...,0] € RV (only the i-th position is one
in the one-hot representation) to e; € R™, where |V is the size of
the vocabulary and m is the size of embedding layer. The second
approach is to directly employ the pre-trained distributed represen-
tations of words, such as Word2Vec [21] and GloVe [25]. Similar
to [33], we use the pre-trained 300-dimensional GloVe features to
represent words. This is particular helpful when the vocabulary
size is too large, where insufficient text data may not lead to well
learned word features in the one-hot representation setting.

In the visual part, Convolutional Neural Networks (CNN) have
been widely used for robust visual feature extraction. In particu-
lar, features extracted from the pre-trained models on the ImageNet
(http://www.image-net.org) dataset have succeeded in many visual
related tasks. More recently, convolutional layer features are being
studied for visual representations as well. Following [39], which
employed convolutional layer features to learn an attention model
for image caption generation, we use the same convolutional layer
(conv5_4) in pre-trained VGG-19 model [27] to extract visual fea-
tures for an input image. The feature size of the convolutional layer
is 196 x 512. In other words, for each image, we have a total of
196 image candidate regions for the attention model.

The model is trained on GPU machines. We use the same split
of [42] to make a fair comparison®. A separate validation dataset is
used to select hyper-parameters and to control the stopping criteria.
We train the model in a mini-batch mode, where 100 text-image
pairs are randomly selected per batch. The hidden layer size is
512. All the source codes of the T-LSTM models will be released
upon the publication of this work.

5.3 Experimental Results

3http://nlp.stanford.edu/software/lex-parser.shtml

“The splits are not publicly available. We obtain the splits by per-
sonal communication with the authors.


http://www.image-net.org

Table 3: Results of different T-LSTM variants and previously
reported results on the Getty testing dataset. The first five mod-
els are from [42]. The last three models are the newly proposed
models (see Table 1 for the details of the models).

Model Precision | Recall | F1 Accuracy
Textual 0.806 0.544 | 0.655 | 0.696
Visual 0.747 0.745 | 0.746 | 0.732
Early Fusion 0.778 0.769 | 0.774 | 0.763
Late Fusion 0.785 0.775 | 0.780 | 0.769
CCR 0.846 0.759 | 0.800 | 0.800
T-LSTM 0.872 0.884 | 0.872 | 0.878
T-LSTM Attention 0.872 0.886 | 0.874 | 0.879
T-LSTM Embedding | 0.895 0.919 | 0.907 | 0.902

Table 4: Results of different T-LSTM variants and previously
reported results on the Twitter testing dataset.

Model Precision | Recall | F1 Accuracy
Textual 0.746 0.693 | 0.727 | 0.722
Visual 0.584 0.561 | 0.573 | 0.553
Early Fusion 0.730 0.744 | 0.737 | 0.717
Late Fusion 0.634 0.610 | 0.622 | 0.604
CCR 0.831 0.805 | 0.818 | 0.809
T-LSTM 0.955 0.971 | 0.963 | 0.960
T-LSTM Attention 0.952 0.968 | 0.960 | 0.956
T-LSTM Embedding | 0.958 0.977 | 0.967 | 0.964

5.3.1 Results on the Getty testing dataset

For all the T-LSTM variants, we use the same parameter set-
tings. Table 3 shows the experimental results on the testing data set
from Getty Images. T-LSTM model has significantly improve the
performance using textual features only. This also coincides with
the results in [33]. Indeed, the work in [42] mainly focus on the
learning of a robust classifier. The textual features are learned in an
unsupervised way and the visual features are extracted from pre-
trained CaffeNet models. Both of them are fixed in the learning of
a sentiment classifier. This explains why T-LSTM can significantly
improve the performance, where feature mappings and structures
are also part of the model to learn.

T-LSTM with the attention model on images slightly improve
the performance compared with T-LSTM. However, its peer model
T-LSTM Embedding shows the best performance on all metrics.
We attribute the difference to the attention model. It suggests that
an auxiliary semantic learning task could lead to a better attention
mechanism and thus a better sentiment classifier. We will quantita-
tively analyze the effect of attention in Section 5.4.

5.3.2  Results on two Twitter datasets

In addition, we test the proposed models on the Twitter dataset.
Table 4 summarizes the results. Similarly, all the T-LSTM variants
have shown significant improvements over previously reported al-
gorithms. The accuracies of all the models are over 95%. Since
T-LSTM has achieved much better results alone, the performance
gain of adding visual features seems marginal. In fact, using the
attention mechanism without the embedding learning task leads
to slight degradation of the performance. We believe this perfor-
mance is highly related to the way how ground truth labels are col-
lected for this Twitter dataset. The authors [42] have indicated that
they collect the weak or noisy sentiment labels of the image tweets
by analyzing the Tweets text only using VADER [13]. Because

VADER is a rule-based classifier for Tweets, it is acceptable to an-
alyze the performance of sentiment classifiers, which is built on top
of content-based features [42]. In contrast, T-LSTM tries to employ
the dependency tree structures, which may have unobserved infor-
mation overlap with the rules in VADER [13]. This explains the
significant performance improvements of T-LSTM over previous
models on this dataset.

There is another small Twitter AMT dataset, which was labeled
by Amazon Mechanical Turk (AMT). This can reduce the bias
induced by using another classifier to collect weak labels. This
dataset is pretty small, with only 613 image tweets. We only use
it as testing data to further evaluate the generability of the three
T-LSTM models. In particular, we evaluate the previously trained
models on the weakly labeled Twitter dataset on this small dataset
without further training or fine-tuning. All the results are shown
in Table 5. Both T-LSTM Attention and T-LSTM Embedding have
shown better performance than T-LSTM, which indicates that the
inclusion of visual features could lead to a more general model. In
particular, joint embedding learning also promotes the performance
of the learned model. All three T-LSTM models have shown bet-
ter performance than the previous approaches, where the models
trained on the weakly labeled Twitter dataset are further fine-tuned
on this small dataset. Since this dataset is labeled by AMT work-
ers, the performance is relatively worse than the performance on
the weakly labeled Twitter testing dataset in Table 4.

Table 5: Results of different T-LSTM variants and previously
reported results on the Twitter testing dataset labeled by Ama-

zon Mechanical Turk workers.
Model Precision | Recall | F1 Accuracy
Textual 0.832 0.638 | 0.722 | 0.688
Visual 0.762 0.715 | 0.737 | 0.677
Early Fusion 0.776 0.740 | 0.758 | 0.700
Late Fusion 0.799 0.738 | 0.767 | 0.716
CCR 0.846 0.759 | 0.800 | 0.800
T-LSTM 1.000 0.807 | 0.893 | 0.878
T-LSTM Attention 1.000 0.830 | 0.907 | 0.892
T-LSTM Embedding | 1.000 0.848 | 0.918 | 0.904

Table 6: Results of different T-LSTM variants and previously
reported results on the newly collected VSO-VT dataset.

Model Precision | Recall | Fl Accuracy
Textual 0.626 0.622 | 0.624 | 0.624
Visual 0.625 0.586 | 0.605 | 0.616
Early Fusion 0.616 0.646 | 0.631 | 0.621
Late Fusion 0.660 0.629 | 0.645 | 0.650
CCR 0.672 0.678 | 0.675 | 0.672
T-LSTM 0.806 0.803 | 0.805 | 0.804
T-LSTM Attention 0.816 0.810 | 0.813 | 0.813
T-LSTM Embedding | 0.821 0.833 | 0.833 | 0.833

5.3.3 Results on VSO-VT

Table 6 shows the performances of different algorithms on the
constructed VSO-VT dataset. In particular, we implement and con-
figure the first five models following the descriptions in [42]. Be-
cause this newly build dataset is pretty noisy’, all of the models

Recall we use the sentiment of an ANP to label all the images
belonging to that ANP.



have relatively worse performance compared with the results on
Getty and Twitter test datasets. However, T-LSTM variants still
shows better performance over CCR and other baseline algorithms.
Meanwhile, T-LSTM Emb has consistently demonstrated the best
performance by all metrics.
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Figure 6: Visualization of atfention on two examples with posi-
tive sentiment.

5.4 Qualitative Attention Analysis

We also try to visualize the attention weights at the leaf nodes
of both T-LSTM Attention and T-LSTM Embedding. In particular,
Xu et al. [39] have employed upsampling and Gaussian filtering
to visualize attention weights. In this section, we follow the same
steps to visualize the attention weights of both models. Recall that
the Twitter AMT dataset is labeled by humans (Amazon Mechani-
cal Turk workers). Therefore, we choose examples from these 613
image Tweets for illustration.

Figure 6 and Figure 7 show several positive and negative exam-
ples for T-LSTM Attention and T-LSTM Embedding, respectively.
Overall, the T-LSTM Embedding model tends to learn more ac-
curate attention than T-LSTM Attention. This indicates that the
auxiliary embedding learning task helps the model to align words
and image regions. Furthermore, the sentiment analysis task al-
lows the attention mechanism to focus more on sentiment related
regions. For instance, positive words love in Figure 6(a), tiny and
cute in Figure 6(c) have all attended on the most related image re-
gions. This is also true for unfortunately in Figure 7(a) and sad in
Figure 7(c) of the two negative examples.

Another qualitative analysis is to check the top-confidence ex-
amples by different models [41, 42]. Even though the dataset is
noisily labeled, Figure 8 shows the top ranked examples (according
to the prediction score) of all the evaluated models on the VSO-
VT dataset. Top ranked examples are quite different from model
to model. For top ranked positives, T-LSTM Embedding favors
images including people, while T-LSTM Attention model prefers
more colorful objects, such as flowers and yummy food. T-LSTM’s
top ranked examples are more likely to include strong emotional
words, such as “well”, “amazing”, “stunning” and “super”, which
also retrieves content-related images. Overall, CCR prefers im-
ages with long descriptions. This may be due to the fact that long
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Figure 7: Visualization of atfention on two examples with neg-
ative sentiment.

sentences could lead to better learned textual representations in un-
supervised distributed learning. For top ranked negative examples,
both T-LSTM Embedding and CCR try to return abandoned and
depressed scenes. Overall, T-LSTM Embedding provides the most
reasonable top ranked examples.

6. CONCLUSIONS

In this study, we present a new end-to-end framework for joint
visual-textual sentiment analysis. Our system tries to integrate tex-
tual and visual information in a structured fashion. Our model also
incorporates an attention mechanism in a tree-structured LSTM to
learn the alignments or correspondences between image regions
and descriptive words. Therefore, the tree-structured model is ca-
pable of propagating the information from children nodes to their
parents nodes in a bottom-up fashion. Later, joint features are ob-
tained at the root nodes of the trees and supplied to a multi-layer
perceptron for training a sentiment classifier. Meanwhile, we also
introduce an auxiliary task, visual-textual semantic embedding, to
help the learning of the attention model. Extensive experimental re-
sults have demonstrated that the proposed joint models have signif-
icantly improved the performance of joint textual-visual sentiment
analysis on several datasets. In particular, the visual-textual seman-
tic embedding task leads to better attention and in turn a better joint
sentiment classifier.
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